MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 8537
Description: Lemma for oeoa 8538. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . 4 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7385 . . 3 (𝑥 = ∅ → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o ∅)))
3 oveq2 7377 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
43oveq2d 7385 . . 3 (𝑥 = ∅ → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o ∅)))
52, 4eqeq12d 2745 . 2 (𝑥 = ∅ → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))))
6 oveq2 7377 . . . 4 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7385 . . 3 (𝑥 = 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝑦)))
8 oveq2 7377 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
98oveq2d 7385 . . 3 (𝑥 = 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
107, 9eqeq12d 2745 . 2 (𝑥 = 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))))
11 oveq2 7377 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7385 . . 3 (𝑥 = suc 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o suc 𝑦)))
13 oveq2 7377 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
1413oveq2d 7385 . . 3 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
1512, 14eqeq12d 2745 . 2 (𝑥 = suc 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
16 oveq2 7377 . . . 4 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7385 . . 3 (𝑥 = 𝐶 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝐶)))
18 oveq2 7377 . . . 4 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
1918oveq2d 7385 . . 3 (𝑥 = 𝐶 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
2017, 19eqeq12d 2745 . 2 (𝑥 = 𝐶 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 8478 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
2421, 22, 23mp2an 692 . . . 4 (𝐴o 𝐵) ∈ On
25 om1 8483 . . . 4 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵)
27 oe0 8463 . . . . 5 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2821, 27ax-mp 5 . . . 4 (𝐴o ∅) = 1o
2928oveq2i 7380 . . 3 ((𝐴o 𝐵) ·o (𝐴o ∅)) = ((𝐴o 𝐵) ·o 1o)
30 oa0 8457 . . . . 5 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +o ∅) = 𝐵
3231oveq2i 7380 . . 3 (𝐴o (𝐵 +o ∅)) = (𝐴o 𝐵)
3326, 29, 323eqtr4ri 2763 . 2 (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))
34 oasuc 8465 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3534oveq2d 7385 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = (𝐴o suc (𝐵 +o 𝑦)))
36 oacl 8476 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
37 oesuc 8468 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3821, 36, 37sylancr 587 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3935, 38eqtrd 2764 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
4022, 39mpan 690 . . . . 5 (𝑦 ∈ On → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
41 oveq1 7376 . . . . 5 ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
4240, 41sylan9eq 2784 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
43 oecl 8478 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
44 omass 8521 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4524, 21, 44mp3an13 1454 . . . . . . . 8 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
47 oesuc 8468 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4847oveq2d 7385 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4946, 48eqtr4d 2767 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5021, 49mpan 690 . . . . 5 (𝑦 ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5150adantr 480 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5242, 51eqtrd 2764 . . 3 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5352ex 412 . 2 (𝑦 ∈ On → ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
54 vex 3448 . . . . . . . 8 𝑥 ∈ V
55 oalim 8473 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5622, 55mpan 690 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5754, 56mpan 690 . . . . . . 7 (Lim 𝑥 → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5857oveq2d 7385 . . . . . 6 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)))
59 limord 6381 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
60 ordelon 6344 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6159, 60sylan 580 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6222, 61, 36sylancr 587 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
6362ralrimiva 3125 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On)
64 0ellim 6384 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
6564ne0d 4301 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
66 vex 3448 . . . . . . . . 9 𝑤 ∈ V
67 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
68 oelim 8475 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6967, 68mpan2 691 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7021, 69mpan 690 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7166, 70mpan 690 . . . . . . . 8 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
72 oewordi 8532 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7367, 72mpan2 691 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7421, 73mp3an3 1452 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
75743impia 1117 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7671, 75onoviun 8289 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7754, 63, 65, 76mp3an2i 1468 . . . . . 6 (Lim 𝑥 → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7858, 77eqtrd 2764 . . . . 5 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
79 iuneq2 4971 . . . . 5 (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
8078, 79sylan9eq 2784 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
81 oelim 8475 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8267, 81mpan2 691 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8321, 82mpan 690 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8454, 83mpan 690 . . . . . . 7 (Lim 𝑥 → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8584oveq2d 7385 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)))
8621, 61, 43sylancr 587 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴o 𝑦) ∈ On)
8786ralrimiva 3125 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴o 𝑦) ∈ On)
88 omlim 8474 . . . . . . . . . 10 (((𝐴o 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
8924, 88mpan 690 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
9066, 89mpan 690 . . . . . . . 8 (Lim 𝑤 → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
91 omwordi 8512 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴o 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
9224, 91mp3an3 1452 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
93923impia 1117 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤))
9490, 93onoviun 8289 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9554, 87, 65, 94mp3an2i 1468 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9685, 95eqtrd 2764 . . . . 5 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9796adantr 480 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9880, 97eqtr4d 2767 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)))
9998ex 412 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥))))
1005, 10, 15, 20, 33, 53, 99tfinds 7816 1 (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292   ciun 4951  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322  (class class class)co 7369  1oc1o 8404   +o coa 8408   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417
This theorem is referenced by:  oeoa  8538
  Copyright terms: Public domain W3C validator