MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 8389
Description: Lemma for oeoa 8390. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7271 . . 3 (𝑥 = ∅ → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o ∅)))
3 oveq2 7263 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
43oveq2d 7271 . . 3 (𝑥 = ∅ → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o ∅)))
52, 4eqeq12d 2754 . 2 (𝑥 = ∅ → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))))
6 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7271 . . 3 (𝑥 = 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝑦)))
8 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
98oveq2d 7271 . . 3 (𝑥 = 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
107, 9eqeq12d 2754 . 2 (𝑥 = 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))))
11 oveq2 7263 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7271 . . 3 (𝑥 = suc 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o suc 𝑦)))
13 oveq2 7263 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
1413oveq2d 7271 . . 3 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
1512, 14eqeq12d 2754 . 2 (𝑥 = suc 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
16 oveq2 7263 . . . 4 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7271 . . 3 (𝑥 = 𝐶 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝐶)))
18 oveq2 7263 . . . 4 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
1918oveq2d 7271 . . 3 (𝑥 = 𝐶 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
2017, 19eqeq12d 2754 . 2 (𝑥 = 𝐶 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 8329 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
2421, 22, 23mp2an 688 . . . 4 (𝐴o 𝐵) ∈ On
25 om1 8335 . . . 4 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵)
27 oe0 8314 . . . . 5 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2821, 27ax-mp 5 . . . 4 (𝐴o ∅) = 1o
2928oveq2i 7266 . . 3 ((𝐴o 𝐵) ·o (𝐴o ∅)) = ((𝐴o 𝐵) ·o 1o)
30 oa0 8308 . . . . 5 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +o ∅) = 𝐵
3231oveq2i 7266 . . 3 (𝐴o (𝐵 +o ∅)) = (𝐴o 𝐵)
3326, 29, 323eqtr4ri 2777 . 2 (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))
34 oasuc 8316 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3534oveq2d 7271 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = (𝐴o suc (𝐵 +o 𝑦)))
36 oacl 8327 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
37 oesuc 8319 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3821, 36, 37sylancr 586 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3935, 38eqtrd 2778 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
4022, 39mpan 686 . . . . 5 (𝑦 ∈ On → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
41 oveq1 7262 . . . . 5 ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
4240, 41sylan9eq 2799 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
43 oecl 8329 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
44 omass 8373 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4524, 21, 44mp3an13 1450 . . . . . . . 8 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
47 oesuc 8319 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4847oveq2d 7271 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4946, 48eqtr4d 2781 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5021, 49mpan 686 . . . . 5 (𝑦 ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5150adantr 480 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5242, 51eqtrd 2778 . . 3 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5352ex 412 . 2 (𝑦 ∈ On → ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
54 vex 3426 . . . . . . . 8 𝑥 ∈ V
55 oalim 8324 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5622, 55mpan 686 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5754, 56mpan 686 . . . . . . 7 (Lim 𝑥 → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5857oveq2d 7271 . . . . . 6 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)))
59 limord 6310 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
60 ordelon 6275 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6159, 60sylan 579 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6222, 61, 36sylancr 586 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
6362ralrimiva 3107 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On)
64 0ellim 6313 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
6564ne0d 4266 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
66 vex 3426 . . . . . . . . 9 𝑤 ∈ V
67 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
68 oelim 8326 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6967, 68mpan2 687 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7021, 69mpan 686 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7166, 70mpan 686 . . . . . . . 8 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
72 oewordi 8384 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7367, 72mpan2 687 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7421, 73mp3an3 1448 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
75743impia 1115 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7671, 75onoviun 8145 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7754, 63, 65, 76mp3an2i 1464 . . . . . 6 (Lim 𝑥 → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7858, 77eqtrd 2778 . . . . 5 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
79 iuneq2 4940 . . . . 5 (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
8078, 79sylan9eq 2799 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
81 oelim 8326 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8267, 81mpan2 687 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8321, 82mpan 686 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8454, 83mpan 686 . . . . . . 7 (Lim 𝑥 → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8584oveq2d 7271 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)))
8621, 61, 43sylancr 586 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴o 𝑦) ∈ On)
8786ralrimiva 3107 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴o 𝑦) ∈ On)
88 omlim 8325 . . . . . . . . . 10 (((𝐴o 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
8924, 88mpan 686 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
9066, 89mpan 686 . . . . . . . 8 (Lim 𝑤 → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
91 omwordi 8364 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴o 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
9224, 91mp3an3 1448 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
93923impia 1115 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤))
9490, 93onoviun 8145 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9554, 87, 65, 94mp3an2i 1464 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9685, 95eqtrd 2778 . . . . 5 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9796adantr 480 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9880, 97eqtr4d 2781 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)))
9998ex 412 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥))))
1005, 10, 15, 20, 33, 53, 99tfinds 7681 1 (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883  c0 4253   ciun 4921  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255  1oc1o 8260   +o coa 8264   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oeoa  8390
  Copyright terms: Public domain W3C validator