Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅)) |
2 | 1 | oveq2d 7291 |
. . 3
⊢ (𝑥 = ∅ → (𝐴 ↑o (𝐵 +o 𝑥)) = (𝐴 ↑o (𝐵 +o ∅))) |
3 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o
∅)) |
4 | 3 | oveq2d 7291 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o
∅))) |
5 | 2, 4 | eqeq12d 2754 |
. 2
⊢ (𝑥 = ∅ → ((𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) ↔ (𝐴 ↑o (𝐵 +o ∅)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o
∅)))) |
6 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦)) |
7 | 6 | oveq2d 7291 |
. . 3
⊢ (𝑥 = 𝑦 → (𝐴 ↑o (𝐵 +o 𝑥)) = (𝐴 ↑o (𝐵 +o 𝑦))) |
8 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) |
9 | 8 | oveq2d 7291 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
10 | 7, 9 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑦 → ((𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) ↔ (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)))) |
11 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦)) |
12 | 11 | oveq2d 7291 |
. . 3
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o (𝐵 +o 𝑥)) = (𝐴 ↑o (𝐵 +o suc 𝑦))) |
13 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) |
14 | 13 | oveq2d 7291 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦))) |
15 | 12, 14 | eqeq12d 2754 |
. 2
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) ↔ (𝐴 ↑o (𝐵 +o suc 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦)))) |
16 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶)) |
17 | 16 | oveq2d 7291 |
. . 3
⊢ (𝑥 = 𝐶 → (𝐴 ↑o (𝐵 +o 𝑥)) = (𝐴 ↑o (𝐵 +o 𝐶))) |
18 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝐶 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐶)) |
19 | 18 | oveq2d 7291 |
. . 3
⊢ (𝑥 = 𝐶 → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |
20 | 17, 19 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝐶 → ((𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) ↔ (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)))) |
21 | | oeoalem.1 |
. . . . 5
⊢ 𝐴 ∈ On |
22 | | oeoalem.3 |
. . . . 5
⊢ 𝐵 ∈ On |
23 | | oecl 8367 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
24 | 21, 22, 23 | mp2an 689 |
. . . 4
⊢ (𝐴 ↑o 𝐵) ∈ On |
25 | | om1 8373 |
. . . 4
⊢ ((𝐴 ↑o 𝐵) ∈ On → ((𝐴 ↑o 𝐵) ·o
1o) = (𝐴
↑o 𝐵)) |
26 | 24, 25 | ax-mp 5 |
. . 3
⊢ ((𝐴 ↑o 𝐵) ·o
1o) = (𝐴
↑o 𝐵) |
27 | | oe0 8352 |
. . . . 5
⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) =
1o) |
28 | 21, 27 | ax-mp 5 |
. . . 4
⊢ (𝐴 ↑o ∅) =
1o |
29 | 28 | oveq2i 7286 |
. . 3
⊢ ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o ∅)) =
((𝐴 ↑o
𝐵) ·o
1o) |
30 | | oa0 8346 |
. . . . 5
⊢ (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵) |
31 | 22, 30 | ax-mp 5 |
. . . 4
⊢ (𝐵 +o ∅) = 𝐵 |
32 | 31 | oveq2i 7286 |
. . 3
⊢ (𝐴 ↑o (𝐵 +o ∅)) =
(𝐴 ↑o 𝐵) |
33 | 26, 29, 32 | 3eqtr4ri 2777 |
. 2
⊢ (𝐴 ↑o (𝐵 +o ∅)) =
((𝐴 ↑o
𝐵) ·o
(𝐴 ↑o
∅)) |
34 | | oasuc 8354 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) |
35 | 34 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o (𝐵 +o suc 𝑦)) = (𝐴 ↑o suc (𝐵 +o 𝑦))) |
36 | | oacl 8365 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On) |
37 | | oesuc 8357 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 ↑o suc (𝐵 +o 𝑦)) = ((𝐴 ↑o (𝐵 +o 𝑦)) ·o 𝐴)) |
38 | 21, 36, 37 | sylancr 587 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o suc (𝐵 +o 𝑦)) = ((𝐴 ↑o (𝐵 +o 𝑦)) ·o 𝐴)) |
39 | 35, 38 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o (𝐵 +o suc 𝑦)) = ((𝐴 ↑o (𝐵 +o 𝑦)) ·o 𝐴)) |
40 | 22, 39 | mpan 687 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ↑o (𝐵 +o suc 𝑦)) = ((𝐴 ↑o (𝐵 +o 𝑦)) ·o 𝐴)) |
41 | | oveq1 7282 |
. . . . 5
⊢ ((𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) → ((𝐴 ↑o (𝐵 +o 𝑦)) ·o 𝐴) = (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴)) |
42 | 40, 41 | sylan9eq 2798 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → (𝐴 ↑o (𝐵 +o suc 𝑦)) = (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴)) |
43 | | oecl 8367 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o 𝑦) ∈ On) |
44 | | omass 8411 |
. . . . . . . . 9
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ (𝐴 ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o ((𝐴 ↑o 𝑦) ·o 𝐴))) |
45 | 24, 21, 44 | mp3an13 1451 |
. . . . . . . 8
⊢ ((𝐴 ↑o 𝑦) ∈ On → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o ((𝐴 ↑o 𝑦) ·o 𝐴))) |
46 | 43, 45 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o ((𝐴 ↑o 𝑦) ·o 𝐴))) |
47 | | oesuc 8357 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) |
48 | 47 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦)) = ((𝐴 ↑o 𝐵) ·o ((𝐴 ↑o 𝑦) ·o 𝐴))) |
49 | 46, 48 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦))) |
50 | 21, 49 | mpan 687 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦))) |
51 | 50 | adantr 481 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → (((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) ·o 𝐴) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦))) |
52 | 42, 51 | eqtrd 2778 |
. . 3
⊢ ((𝑦 ∈ On ∧ (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → (𝐴 ↑o (𝐵 +o suc 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦))) |
53 | 52 | ex 413 |
. 2
⊢ (𝑦 ∈ On → ((𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) → (𝐴 ↑o (𝐵 +o suc 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o suc 𝑦)))) |
54 | | vex 3436 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
55 | | oalim 8362 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
56 | 22, 55 | mpan 687 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
57 | 54, 56 | mpan 687 |
. . . . . . 7
⊢ (Lim
𝑥 → (𝐵 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) |
58 | 57 | oveq2d 7291 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ↑o (𝐵 +o 𝑥)) = (𝐴 ↑o ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦))) |
59 | | limord 6325 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → Ord 𝑥) |
60 | | ordelon 6290 |
. . . . . . . . . 10
⊢ ((Ord
𝑥 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
61 | 59, 60 | sylan 580 |
. . . . . . . . 9
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
62 | 22, 61, 36 | sylancr 587 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → (𝐵 +o 𝑦) ∈ On) |
63 | 62 | ralrimiva 3103 |
. . . . . . 7
⊢ (Lim
𝑥 → ∀𝑦 ∈ 𝑥 (𝐵 +o 𝑦) ∈ On) |
64 | | 0ellim 6328 |
. . . . . . . 8
⊢ (Lim
𝑥 → ∅ ∈
𝑥) |
65 | 64 | ne0d 4269 |
. . . . . . 7
⊢ (Lim
𝑥 → 𝑥 ≠ ∅) |
66 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
67 | | oeoalem.2 |
. . . . . . . . . . 11
⊢ ∅
∈ 𝐴 |
68 | | oelim 8364 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑o 𝑧)) |
69 | 67, 68 | mpan2 688 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴 ↑o 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑o 𝑧)) |
70 | 21, 69 | mpan 687 |
. . . . . . . . 9
⊢ ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴 ↑o 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑o 𝑧)) |
71 | 66, 70 | mpan 687 |
. . . . . . . 8
⊢ (Lim
𝑤 → (𝐴 ↑o 𝑤) = ∪ 𝑧 ∈ 𝑤 (𝐴 ↑o 𝑧)) |
72 | | oewordi 8422 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝑧 ⊆ 𝑤 → (𝐴 ↑o 𝑧) ⊆ (𝐴 ↑o 𝑤))) |
73 | 67, 72 | mpan2 688 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ 𝑤 → (𝐴 ↑o 𝑧) ⊆ (𝐴 ↑o 𝑤))) |
74 | 21, 73 | mp3an3 1449 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ⊆ 𝑤 → (𝐴 ↑o 𝑧) ⊆ (𝐴 ↑o 𝑤))) |
75 | 74 | 3impia 1116 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤) → (𝐴 ↑o 𝑧) ⊆ (𝐴 ↑o 𝑤)) |
76 | 71, 75 | onoviun 8174 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐵 +o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴 ↑o ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) = ∪
𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦))) |
77 | 54, 63, 65, 76 | mp3an2i 1465 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐴 ↑o ∪ 𝑦 ∈ 𝑥 (𝐵 +o 𝑦)) = ∪
𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦))) |
78 | 58, 77 | eqtrd 2778 |
. . . . 5
⊢ (Lim
𝑥 → (𝐴 ↑o (𝐵 +o 𝑥)) = ∪
𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦))) |
79 | | iuneq2 4943 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) → ∪
𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
80 | 78, 79 | sylan9eq 2798 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → (𝐴 ↑o (𝐵 +o 𝑥)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
81 | | oelim 8364 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
82 | 67, 81 | mpan2 688 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
83 | 21, 82 | mpan 687 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
84 | 54, 83 | mpan 687 |
. . . . . . 7
⊢ (Lim
𝑥 → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
85 | 84 | oveq2d 7291 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ((𝐴 ↑o 𝐵) ·o ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦))) |
86 | 21, 61, 43 | sylancr 587 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝑦 ∈ 𝑥) → (𝐴 ↑o 𝑦) ∈ On) |
87 | 86 | ralrimiva 3103 |
. . . . . . 7
⊢ (Lim
𝑥 → ∀𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On) |
88 | | omlim 8363 |
. . . . . . . . . 10
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴 ↑o 𝐵) ·o 𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑o 𝐵) ·o 𝑧)) |
89 | 24, 88 | mpan 687 |
. . . . . . . . 9
⊢ ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴 ↑o 𝐵) ·o 𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑o 𝐵) ·o 𝑧)) |
90 | 66, 89 | mpan 687 |
. . . . . . . 8
⊢ (Lim
𝑤 → ((𝐴 ↑o 𝐵) ·o 𝑤) = ∪ 𝑧 ∈ 𝑤 ((𝐴 ↑o 𝐵) ·o 𝑧)) |
91 | | omwordi 8402 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴 ↑o 𝐵) ∈ On) → (𝑧 ⊆ 𝑤 → ((𝐴 ↑o 𝐵) ·o 𝑧) ⊆ ((𝐴 ↑o 𝐵) ·o 𝑤))) |
92 | 24, 91 | mp3an3 1449 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ⊆ 𝑤 → ((𝐴 ↑o 𝐵) ·o 𝑧) ⊆ ((𝐴 ↑o 𝐵) ·o 𝑤))) |
93 | 92 | 3impia 1116 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤) → ((𝐴 ↑o 𝐵) ·o 𝑧) ⊆ ((𝐴 ↑o 𝐵) ·o 𝑤)) |
94 | 90, 93 | onoviun 8174 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴 ↑o 𝐵) ·o ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
95 | 54, 87, 65, 94 | mp3an2i 1465 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ↑o 𝐵) ·o ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
96 | 85, 95 | eqtrd 2778 |
. . . . 5
⊢ (Lim
𝑥 → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ∪ 𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
97 | 96 | adantr 481 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)) = ∪
𝑦 ∈ 𝑥 ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) |
98 | 80, 97 | eqtr4d 2781 |
. . 3
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦))) → (𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥))) |
99 | 98 | ex 413 |
. 2
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ↑o (𝐵 +o 𝑦)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑦)) → (𝐴 ↑o (𝐵 +o 𝑥)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝑥)))) |
100 | 5, 10, 15, 20, 33, 53, 99 | tfinds 7706 |
1
⊢ (𝐶 ∈ On → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |