MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 8302
Description: Lemma for oeoa 8303. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7199 . . . 4 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7207 . . 3 (𝑥 = ∅ → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o ∅)))
3 oveq2 7199 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
43oveq2d 7207 . . 3 (𝑥 = ∅ → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o ∅)))
52, 4eqeq12d 2752 . 2 (𝑥 = ∅ → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))))
6 oveq2 7199 . . . 4 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7207 . . 3 (𝑥 = 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝑦)))
8 oveq2 7199 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
98oveq2d 7207 . . 3 (𝑥 = 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
107, 9eqeq12d 2752 . 2 (𝑥 = 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))))
11 oveq2 7199 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7207 . . 3 (𝑥 = suc 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o suc 𝑦)))
13 oveq2 7199 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
1413oveq2d 7207 . . 3 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
1512, 14eqeq12d 2752 . 2 (𝑥 = suc 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
16 oveq2 7199 . . . 4 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7207 . . 3 (𝑥 = 𝐶 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝐶)))
18 oveq2 7199 . . . 4 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
1918oveq2d 7207 . . 3 (𝑥 = 𝐶 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
2017, 19eqeq12d 2752 . 2 (𝑥 = 𝐶 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 8242 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
2421, 22, 23mp2an 692 . . . 4 (𝐴o 𝐵) ∈ On
25 om1 8248 . . . 4 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵)
27 oe0 8227 . . . . 5 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2821, 27ax-mp 5 . . . 4 (𝐴o ∅) = 1o
2928oveq2i 7202 . . 3 ((𝐴o 𝐵) ·o (𝐴o ∅)) = ((𝐴o 𝐵) ·o 1o)
30 oa0 8221 . . . . 5 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +o ∅) = 𝐵
3231oveq2i 7202 . . 3 (𝐴o (𝐵 +o ∅)) = (𝐴o 𝐵)
3326, 29, 323eqtr4ri 2770 . 2 (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))
34 oasuc 8229 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3534oveq2d 7207 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = (𝐴o suc (𝐵 +o 𝑦)))
36 oacl 8240 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
37 oesuc 8232 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3821, 36, 37sylancr 590 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3935, 38eqtrd 2771 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
4022, 39mpan 690 . . . . 5 (𝑦 ∈ On → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
41 oveq1 7198 . . . . 5 ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
4240, 41sylan9eq 2791 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
43 oecl 8242 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
44 omass 8286 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4524, 21, 44mp3an13 1454 . . . . . . . 8 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
47 oesuc 8232 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4847oveq2d 7207 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4946, 48eqtr4d 2774 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5021, 49mpan 690 . . . . 5 (𝑦 ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5150adantr 484 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5242, 51eqtrd 2771 . . 3 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5352ex 416 . 2 (𝑦 ∈ On → ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
54 vex 3402 . . . . . . . 8 𝑥 ∈ V
55 oalim 8237 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5622, 55mpan 690 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5754, 56mpan 690 . . . . . . 7 (Lim 𝑥 → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5857oveq2d 7207 . . . . . 6 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)))
59 limord 6250 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
60 ordelon 6215 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6159, 60sylan 583 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6222, 61, 36sylancr 590 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
6362ralrimiva 3095 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On)
64 0ellim 6253 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
6564ne0d 4236 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
66 vex 3402 . . . . . . . . 9 𝑤 ∈ V
67 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
68 oelim 8239 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6967, 68mpan2 691 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7021, 69mpan 690 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7166, 70mpan 690 . . . . . . . 8 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
72 oewordi 8297 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7367, 72mpan2 691 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7421, 73mp3an3 1452 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
75743impia 1119 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7671, 75onoviun 8058 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7754, 63, 65, 76mp3an2i 1468 . . . . . 6 (Lim 𝑥 → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7858, 77eqtrd 2771 . . . . 5 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
79 iuneq2 4909 . . . . 5 (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
8078, 79sylan9eq 2791 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
81 oelim 8239 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8267, 81mpan2 691 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8321, 82mpan 690 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8454, 83mpan 690 . . . . . . 7 (Lim 𝑥 → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8584oveq2d 7207 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)))
8621, 61, 43sylancr 590 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴o 𝑦) ∈ On)
8786ralrimiva 3095 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴o 𝑦) ∈ On)
88 omlim 8238 . . . . . . . . . 10 (((𝐴o 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
8924, 88mpan 690 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
9066, 89mpan 690 . . . . . . . 8 (Lim 𝑤 → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
91 omwordi 8277 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴o 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
9224, 91mp3an3 1452 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
93923impia 1119 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤))
9490, 93onoviun 8058 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9554, 87, 65, 94mp3an2i 1468 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9685, 95eqtrd 2771 . . . . 5 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9796adantr 484 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9880, 97eqtr4d 2774 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)))
9998ex 416 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥))))
1005, 10, 15, 20, 33, 53, 99tfinds 7616 1 (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  Vcvv 3398  wss 3853  c0 4223   ciun 4890  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  (class class class)co 7191  1oc1o 8173   +o coa 8177   ·o comu 8178  o coe 8179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-oexp 8186
This theorem is referenced by:  oeoa  8303
  Copyright terms: Public domain W3C validator