| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10166. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem8 | ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4595 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | fveq2d 6844 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴})) |
| 3 | pweq 4573 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6844 | . . 3 ⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
| 5 | 2, 4 | eqeq12d 2745 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴))) |
| 6 | ackbij1lem4 10151 | . . . 4 ⊢ (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin)) | |
| 7 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 8 | 7 | ackbij1lem7 10154 | . . . 4 ⊢ ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 10 | vex 3448 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 11 | sneq 4595 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → {𝑦} = {𝑎}) | |
| 12 | pweq 4573 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎) | |
| 13 | 11, 12 | xpeq12d 5662 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)) |
| 14 | 10, 13 | iunxsn 5050 | . . . . 5 ⊢ ∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎) |
| 15 | 14 | fveq2i 6843 | . . . 4 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎)) |
| 16 | vpwex 5327 | . . . . . 6 ⊢ 𝒫 𝑎 ∈ V | |
| 17 | xpsnen2g 9011 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎) | |
| 18 | 10, 16, 17 | mp2an 692 | . . . . 5 ⊢ ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 |
| 19 | carden2b 9896 | . . . . 5 ⊢ (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎) |
| 21 | 15, 20 | eqtri 2752 | . . 3 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎) |
| 22 | 9, 21 | eqtrdi 2780 | . 2 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎)) |
| 23 | 5, 22 | vtoclga 3540 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 𝒫 cpw 4559 {csn 4585 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 ωcom 7822 ≈ cen 8892 Fincfn 8895 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-er 8648 df-en 8896 df-fin 8899 df-card 9868 |
| This theorem is referenced by: ackbij1lem14 10161 ackbij1b 10167 |
| Copyright terms: Public domain | W3C validator |