| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10251. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem8 | ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4611 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | fveq2d 6880 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴})) |
| 3 | pweq 4589 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6880 | . . 3 ⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
| 5 | 2, 4 | eqeq12d 2751 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴))) |
| 6 | ackbij1lem4 10236 | . . . 4 ⊢ (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin)) | |
| 7 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 8 | 7 | ackbij1lem7 10239 | . . . 4 ⊢ ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 10 | vex 3463 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 11 | sneq 4611 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → {𝑦} = {𝑎}) | |
| 12 | pweq 4589 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎) | |
| 13 | 11, 12 | xpeq12d 5685 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)) |
| 14 | 10, 13 | iunxsn 5067 | . . . . 5 ⊢ ∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎) |
| 15 | 14 | fveq2i 6879 | . . . 4 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎)) |
| 16 | vpwex 5347 | . . . . . 6 ⊢ 𝒫 𝑎 ∈ V | |
| 17 | xpsnen2g 9079 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎) | |
| 18 | 10, 16, 17 | mp2an 692 | . . . . 5 ⊢ ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 |
| 19 | carden2b 9981 | . . . . 5 ⊢ (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎) |
| 21 | 15, 20 | eqtri 2758 | . . 3 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎) |
| 22 | 9, 21 | eqtrdi 2786 | . 2 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎)) |
| 23 | 5, 22 | vtoclga 3556 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 𝒫 cpw 4575 {csn 4601 ∪ ciun 4967 class class class wbr 5119 ↦ cmpt 5201 × cxp 5652 ‘cfv 6531 ωcom 7861 ≈ cen 8956 Fincfn 8959 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-er 8719 df-en 8960 df-fin 8963 df-card 9953 |
| This theorem is referenced by: ackbij1lem14 10246 ackbij1b 10252 |
| Copyright terms: Public domain | W3C validator |