| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10128. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem8 | ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4583 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | fveq2d 6826 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴})) |
| 3 | pweq 4561 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6826 | . . 3 ⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
| 5 | 2, 4 | eqeq12d 2747 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴))) |
| 6 | ackbij1lem4 10113 | . . . 4 ⊢ (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin)) | |
| 7 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 8 | 7 | ackbij1lem7 10116 | . . . 4 ⊢ ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 10 | vex 3440 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 11 | sneq 4583 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → {𝑦} = {𝑎}) | |
| 12 | pweq 4561 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎) | |
| 13 | 11, 12 | xpeq12d 5645 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)) |
| 14 | 10, 13 | iunxsn 5037 | . . . . 5 ⊢ ∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎) |
| 15 | 14 | fveq2i 6825 | . . . 4 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎)) |
| 16 | vpwex 5313 | . . . . . 6 ⊢ 𝒫 𝑎 ∈ V | |
| 17 | xpsnen2g 8983 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎) | |
| 18 | 10, 16, 17 | mp2an 692 | . . . . 5 ⊢ ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 |
| 19 | carden2b 9860 | . . . . 5 ⊢ (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎) |
| 21 | 15, 20 | eqtri 2754 | . . 3 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎) |
| 22 | 9, 21 | eqtrdi 2782 | . 2 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎)) |
| 23 | 5, 22 | vtoclga 3528 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 𝒫 cpw 4547 {csn 4573 ∪ ciun 4939 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 ωcom 7796 ≈ cen 8866 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-er 8622 df-en 8870 df-fin 8873 df-card 9832 |
| This theorem is referenced by: ackbij1lem14 10123 ackbij1b 10129 |
| Copyright terms: Public domain | W3C validator |