MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem8 Structured version   Visualization version   GIF version

Theorem ackbij1lem8 10117
Description: Lemma for ackbij1 10128. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem8 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4583 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21fveq2d 6826 . . 3 (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴}))
3 pweq 4561 . . . 4 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
43fveq2d 6826 . . 3 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
52, 4eqeq12d 2747 . 2 (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴)))
6 ackbij1lem4 10113 . . . 4 (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin))
7 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
87ackbij1lem7 10116 . . . 4 ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
96, 8syl 17 . . 3 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
10 vex 3440 . . . . . 6 𝑎 ∈ V
11 sneq 4583 . . . . . . 7 (𝑦 = 𝑎 → {𝑦} = {𝑎})
12 pweq 4561 . . . . . . 7 (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎)
1311, 12xpeq12d 5645 . . . . . 6 (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎))
1410, 13iunxsn 5037 . . . . 5 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)
1514fveq2i 6825 . . . 4 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎))
16 vpwex 5313 . . . . . 6 𝒫 𝑎 ∈ V
17 xpsnen2g 8983 . . . . . 6 ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎)
1810, 16, 17mp2an 692 . . . . 5 ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎
19 carden2b 9860 . . . . 5 (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎))
2018, 19ax-mp 5 . . . 4 (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)
2115, 20eqtri 2754 . . 3 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎)
229, 21eqtrdi 2782 . 2 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎))
235, 22vtoclga 3528 1 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  𝒫 cpw 4547  {csn 4573   ciun 4939   class class class wbr 5089  cmpt 5170   × cxp 5612  cfv 6481  ωcom 7796  cen 8866  Fincfn 8869  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-en 8870  df-fin 8873  df-card 9832
This theorem is referenced by:  ackbij1lem14  10123  ackbij1b  10129
  Copyright terms: Public domain W3C validator