Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem8 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9852. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem8 | ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4551 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | fveq2d 6721 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴})) |
3 | pweq 4529 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) | |
4 | 3 | fveq2d 6721 | . . 3 ⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
5 | 2, 4 | eqeq12d 2753 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴))) |
6 | ackbij1lem4 9837 | . . . 4 ⊢ (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin)) | |
7 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
8 | 7 | ackbij1lem7 9840 | . . . 4 ⊢ ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
10 | vex 3412 | . . . . . 6 ⊢ 𝑎 ∈ V | |
11 | sneq 4551 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → {𝑦} = {𝑎}) | |
12 | pweq 4529 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎) | |
13 | 11, 12 | xpeq12d 5582 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)) |
14 | 10, 13 | iunxsn 4999 | . . . . 5 ⊢ ∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎) |
15 | 14 | fveq2i 6720 | . . . 4 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎)) |
16 | vpwex 5270 | . . . . . 6 ⊢ 𝒫 𝑎 ∈ V | |
17 | xpsnen2g 8738 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎) | |
18 | 10, 16, 17 | mp2an 692 | . . . . 5 ⊢ ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 |
19 | carden2b 9583 | . . . . 5 ⊢ (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎) |
21 | 15, 20 | eqtri 2765 | . . 3 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎) |
22 | 9, 21 | eqtrdi 2794 | . 2 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎)) |
23 | 5, 22 | vtoclga 3489 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∩ cin 3865 𝒫 cpw 4513 {csn 4541 ∪ ciun 4904 class class class wbr 5053 ↦ cmpt 5135 × cxp 5549 ‘cfv 6380 ωcom 7644 ≈ cen 8623 Fincfn 8626 cardccrd 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1st 7761 df-2nd 7762 df-1o 8202 df-er 8391 df-en 8627 df-fin 8630 df-card 9555 |
This theorem is referenced by: ackbij1lem14 9847 ackbij1b 9853 |
Copyright terms: Public domain | W3C validator |