MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem8 Structured version   Visualization version   GIF version

Theorem ackbij1lem8 10186
Description: Lemma for ackbij1 10197. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem8 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4602 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21fveq2d 6865 . . 3 (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴}))
3 pweq 4580 . . . 4 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
43fveq2d 6865 . . 3 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
52, 4eqeq12d 2746 . 2 (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴)))
6 ackbij1lem4 10182 . . . 4 (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin))
7 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
87ackbij1lem7 10185 . . . 4 ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
96, 8syl 17 . . 3 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
10 vex 3454 . . . . . 6 𝑎 ∈ V
11 sneq 4602 . . . . . . 7 (𝑦 = 𝑎 → {𝑦} = {𝑎})
12 pweq 4580 . . . . . . 7 (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎)
1311, 12xpeq12d 5672 . . . . . 6 (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎))
1410, 13iunxsn 5058 . . . . 5 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)
1514fveq2i 6864 . . . 4 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎))
16 vpwex 5335 . . . . . 6 𝒫 𝑎 ∈ V
17 xpsnen2g 9039 . . . . . 6 ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎)
1810, 16, 17mp2an 692 . . . . 5 ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎
19 carden2b 9927 . . . . 5 (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎))
2018, 19ax-mp 5 . . . 4 (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)
2115, 20eqtri 2753 . . 3 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎)
229, 21eqtrdi 2781 . 2 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎))
235, 22vtoclga 3546 1 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  𝒫 cpw 4566  {csn 4592   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  cfv 6514  ωcom 7845  cen 8918  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-er 8674  df-en 8922  df-fin 8925  df-card 9899
This theorem is referenced by:  ackbij1lem14  10192  ackbij1b  10198
  Copyright terms: Public domain W3C validator