MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem8 Structured version   Visualization version   GIF version

Theorem ackbij1lem8 10295
Description: Lemma for ackbij1 10306. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem8 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sneq 4658 . . . 4 (𝑎 = 𝐴 → {𝑎} = {𝐴})
21fveq2d 6924 . . 3 (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴}))
3 pweq 4636 . . . 4 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
43fveq2d 6924 . . 3 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
52, 4eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴)))
6 ackbij1lem4 10291 . . . 4 (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin))
7 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
87ackbij1lem7 10294 . . . 4 ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
96, 8syl 17 . . 3 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)))
10 vex 3492 . . . . . 6 𝑎 ∈ V
11 sneq 4658 . . . . . . 7 (𝑦 = 𝑎 → {𝑦} = {𝑎})
12 pweq 4636 . . . . . . 7 (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎)
1311, 12xpeq12d 5731 . . . . . 6 (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎))
1410, 13iunxsn 5114 . . . . 5 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)
1514fveq2i 6923 . . . 4 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎))
16 vpwex 5395 . . . . . 6 𝒫 𝑎 ∈ V
17 xpsnen2g 9131 . . . . . 6 ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎)
1810, 16, 17mp2an 691 . . . . 5 ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎
19 carden2b 10036 . . . . 5 (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎))
2018, 19ax-mp 5 . . . 4 (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)
2115, 20eqtri 2768 . . 3 (card‘ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎)
229, 21eqtrdi 2796 . 2 (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎))
235, 22vtoclga 3589 1 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  𝒫 cpw 4622  {csn 4648   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  cfv 6573  ωcom 7903  cen 9000  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-er 8763  df-en 9004  df-fin 9007  df-card 10008
This theorem is referenced by:  ackbij1lem14  10301  ackbij1b  10307
  Copyright terms: Public domain W3C validator