| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem8 | ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4599 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 2 | 1 | fveq2d 6862 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹‘{𝑎}) = (𝐹‘{𝐴})) |
| 3 | pweq 4577 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6862 | . . 3 ⊢ (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴)) |
| 5 | 2, 4 | eqeq12d 2745 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹‘{𝑎}) = (card‘𝒫 𝑎) ↔ (𝐹‘{𝐴}) = (card‘𝒫 𝐴))) |
| 6 | ackbij1lem4 10175 | . . . 4 ⊢ (𝑎 ∈ ω → {𝑎} ∈ (𝒫 ω ∩ Fin)) | |
| 7 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 8 | 7 | ackbij1lem7 10178 | . . . 4 ⊢ ({𝑎} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦))) |
| 10 | vex 3451 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 11 | sneq 4599 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → {𝑦} = {𝑎}) | |
| 12 | pweq 4577 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎) | |
| 13 | 11, 12 | xpeq12d 5669 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎)) |
| 14 | 10, 13 | iunxsn 5055 | . . . . 5 ⊢ ∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦) = ({𝑎} × 𝒫 𝑎) |
| 15 | 14 | fveq2i 6861 | . . . 4 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘({𝑎} × 𝒫 𝑎)) |
| 16 | vpwex 5332 | . . . . . 6 ⊢ 𝒫 𝑎 ∈ V | |
| 17 | xpsnen2g 9034 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V) → ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎) | |
| 18 | 10, 16, 17 | mp2an 692 | . . . . 5 ⊢ ({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 |
| 19 | carden2b 9920 | . . . . 5 ⊢ (({𝑎} × 𝒫 𝑎) ≈ 𝒫 𝑎 → (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎)) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (card‘({𝑎} × 𝒫 𝑎)) = (card‘𝒫 𝑎) |
| 21 | 15, 20 | eqtri 2752 | . . 3 ⊢ (card‘∪ 𝑦 ∈ {𝑎} ({𝑦} × 𝒫 𝑦)) = (card‘𝒫 𝑎) |
| 22 | 9, 21 | eqtrdi 2780 | . 2 ⊢ (𝑎 ∈ ω → (𝐹‘{𝑎}) = (card‘𝒫 𝑎)) |
| 23 | 5, 22 | vtoclga 3543 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 𝒫 cpw 4563 {csn 4589 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 ωcom 7842 ≈ cen 8915 Fincfn 8918 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-er 8671 df-en 8919 df-fin 8922 df-card 9892 |
| This theorem is referenced by: ackbij1lem14 10185 ackbij1b 10191 |
| Copyright terms: Public domain | W3C validator |