Step | Hyp | Ref
| Expression |
1 | | raleq 3342 |
. . . 4
⊢ (𝑦 = ∅ → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ dom
vol)) |
2 | | iuneq1 4940 |
. . . . 5
⊢ (𝑦 = ∅ → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
3 | 2 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = ∅ → (∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol)) |
4 | 1, 3 | imbi12d 345 |
. . 3
⊢ (𝑦 = ∅ →
((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol))) |
5 | | raleq 3342 |
. . . 4
⊢ (𝑦 = 𝑥 → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
6 | | iuneq1 4940 |
. . . . 5
⊢ (𝑦 = 𝑥 → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝑥 𝐵) |
7 | 6 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = 𝑥 → (∪
𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
8 | 5, 7 | imbi12d 345 |
. . 3
⊢ (𝑦 = 𝑥 → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol))) |
9 | | raleq 3342 |
. . . 4
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
10 | | iuneq1 4940 |
. . . . 5
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵) |
11 | 10 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
12 | 9, 11 | imbi12d 345 |
. . 3
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))) |
13 | | raleq 3342 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
14 | | iuneq1 4940 |
. . . . 5
⊢ (𝑦 = 𝐴 → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
15 | 14 | eleq1d 2823 |
. . . 4
⊢ (𝑦 = 𝐴 → (∪
𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
16 | 13, 15 | imbi12d 345 |
. . 3
⊢ (𝑦 = 𝐴 → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol))) |
17 | | 0iun 4992 |
. . . . 5
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
18 | | 0mbl 24703 |
. . . . 5
⊢ ∅
∈ dom vol |
19 | 17, 18 | eqeltri 2835 |
. . . 4
⊢ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol |
20 | 19 | a1i 11 |
. . 3
⊢
(∀𝑘 ∈
∅ 𝐵 ∈ dom vol
→ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol) |
21 | | ssun1 4106 |
. . . . . . 7
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
22 | | ssralv 3987 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol) |
24 | 23 | imim1i 63 |
. . . . 5
⊢
((∀𝑘 ∈
𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
25 | | ssun2 4107 |
. . . . . . 7
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
26 | | ssralv 3987 |
. . . . . . 7
⊢ ({𝑧} ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol)) |
27 | 25, 26 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) |
28 | | iunxun 5023 |
. . . . . . . 8
⊢ ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 = (∪
𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) |
29 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
30 | | csbeq1 3835 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ⦋𝑥 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
31 | 30 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol)) |
32 | 29, 31 | ralsn 4617 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑧}⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
33 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝐵 ∈ dom vol |
34 | | nfcsb1v 3857 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 |
35 | 34 | nfel1 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol |
36 | | csbeq1a 3846 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) |
37 | 36 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (𝐵 ∈ dom vol ↔ ⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol)) |
38 | 33, 35, 37 | cbvralw 3373 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol ↔ ∀𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol) |
39 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝐵 |
40 | 39, 34, 36 | cbviun 4966 |
. . . . . . . . . . . 12
⊢ ∪ 𝑘 ∈ {𝑧}𝐵 = ∪ 𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 |
41 | 29, 30 | iunxsn 5020 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
42 | 40, 41 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ∪ 𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
43 | 42 | eleq1i 2829 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
44 | 32, 38, 43 | 3bitr4i 303 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) |
45 | | unmbl 24701 |
. . . . . . . . 9
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → (∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) ∈ dom vol) |
46 | 44, 45 | sylan2b 594 |
. . . . . . . 8
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → (∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) ∈ dom vol) |
47 | 28, 46 | eqeltrid 2843 |
. . . . . . 7
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol) |
48 | 47 | expcom 414 |
. . . . . 6
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol → (∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
49 | 27, 48 | syl 17 |
. . . . 5
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → (∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
50 | 24, 49 | sylcom 30 |
. . . 4
⊢
((∀𝑘 ∈
𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
51 | 50 | a1i 11 |
. . 3
⊢ (𝑥 ∈ Fin →
((∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))) |
52 | 4, 8, 12, 16, 20, 51 | findcard2 8947 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
53 | 52 | imp 407 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) |