| Step | Hyp | Ref
| Expression |
| 1 | | raleq 3323 |
. . . 4
⊢ (𝑦 = ∅ → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ dom
vol)) |
| 2 | | iuneq1 5008 |
. . . . 5
⊢ (𝑦 = ∅ → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵) |
| 3 | 2 | eleq1d 2826 |
. . . 4
⊢ (𝑦 = ∅ → (∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol)) |
| 4 | 1, 3 | imbi12d 344 |
. . 3
⊢ (𝑦 = ∅ →
((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol))) |
| 5 | | raleq 3323 |
. . . 4
⊢ (𝑦 = 𝑥 → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
| 6 | | iuneq1 5008 |
. . . . 5
⊢ (𝑦 = 𝑥 → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝑥 𝐵) |
| 7 | 6 | eleq1d 2826 |
. . . 4
⊢ (𝑦 = 𝑥 → (∪
𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
| 8 | 5, 7 | imbi12d 344 |
. . 3
⊢ (𝑦 = 𝑥 → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol))) |
| 9 | | raleq 3323 |
. . . 4
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
| 10 | | iuneq1 5008 |
. . . . 5
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵) |
| 11 | 10 | eleq1d 2826 |
. . . 4
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
| 12 | 9, 11 | imbi12d 344 |
. . 3
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))) |
| 13 | | raleq 3323 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
| 14 | | iuneq1 5008 |
. . . . 5
⊢ (𝑦 = 𝐴 → ∪
𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵) |
| 15 | 14 | eleq1d 2826 |
. . . 4
⊢ (𝑦 = 𝐴 → (∪
𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
| 16 | 13, 15 | imbi12d 344 |
. . 3
⊢ (𝑦 = 𝐴 → ((∀𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol))) |
| 17 | | 0iun 5063 |
. . . . 5
⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ |
| 18 | | 0mbl 25574 |
. . . . 5
⊢ ∅
∈ dom vol |
| 19 | 17, 18 | eqeltri 2837 |
. . . 4
⊢ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol |
| 20 | 19 | a1i 11 |
. . 3
⊢
(∀𝑘 ∈
∅ 𝐵 ∈ dom vol
→ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol) |
| 21 | | ssun1 4178 |
. . . . . . 7
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
| 22 | | ssralv 4052 |
. . . . . . 7
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol) |
| 24 | 23 | imim1i 63 |
. . . . 5
⊢
((∀𝑘 ∈
𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol)) |
| 25 | | ssun2 4179 |
. . . . . . 7
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
| 26 | | ssralv 4052 |
. . . . . . 7
⊢ ({𝑧} ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol)) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) |
| 28 | | iunxun 5094 |
. . . . . . . 8
⊢ ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 = (∪
𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) |
| 29 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 30 | | csbeq1 3902 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ⦋𝑥 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 31 | 30 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol)) |
| 32 | 29, 31 | ralsn 4681 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑧}⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
| 33 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝐵 ∈ dom vol |
| 34 | | nfcsb1v 3923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 |
| 35 | 34 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol |
| 36 | | csbeq1a 3913 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) |
| 37 | 36 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (𝐵 ∈ dom vol ↔ ⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol)) |
| 38 | 33, 35, 37 | cbvralw 3306 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol ↔ ∀𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 ∈ dom vol) |
| 39 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝐵 |
| 40 | 39, 34, 36 | cbviun 5036 |
. . . . . . . . . . . 12
⊢ ∪ 𝑘 ∈ {𝑧}𝐵 = ∪ 𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 |
| 41 | 29, 30 | iunxsn 5091 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ {𝑧}⦋𝑥 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
| 42 | 40, 41 | eqtri 2765 |
. . . . . . . . . . 11
⊢ ∪ 𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵 |
| 43 | 42 | eleq1i 2832 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ dom vol) |
| 44 | 32, 38, 43 | 3bitr4i 303 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) |
| 45 | | unmbl 25572 |
. . . . . . . . 9
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∪ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → (∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) ∈ dom vol) |
| 46 | 44, 45 | sylan2b 594 |
. . . . . . . 8
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → (∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪
𝑘 ∈ {𝑧}𝐵) ∈ dom vol) |
| 47 | 28, 46 | eqeltrid 2845 |
. . . . . . 7
⊢
((∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol) |
| 48 | 47 | expcom 413 |
. . . . . 6
⊢
(∀𝑘 ∈
{𝑧}𝐵 ∈ dom vol → (∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
| 49 | 27, 48 | syl 17 |
. . . . 5
⊢
(∀𝑘 ∈
(𝑥 ∪ {𝑧})𝐵 ∈ dom vol → (∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
| 50 | 24, 49 | sylcom 30 |
. . . 4
⊢
((∀𝑘 ∈
𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)) |
| 51 | 50 | a1i 11 |
. . 3
⊢ (𝑥 ∈ Fin →
((∀𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∪ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))) |
| 52 | 4, 8, 12, 16, 20, 51 | findcard2 9204 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol)) |
| 53 | 52 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) |