MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finiunmbl Structured version   Visualization version   GIF version

Theorem finiunmbl 25452
Description: A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.)
Assertion
Ref Expression
finiunmbl ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem finiunmbl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3298 . . . 4 (𝑦 = ∅ → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ dom vol))
2 iuneq1 4975 . . . . 5 (𝑦 = ∅ → 𝑘𝑦 𝐵 = 𝑘 ∈ ∅ 𝐵)
32eleq1d 2814 . . . 4 (𝑦 = ∅ → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ ∅ 𝐵 ∈ dom vol))
41, 3imbi12d 344 . . 3 (𝑦 = ∅ → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)))
5 raleq 3298 . . . 4 (𝑦 = 𝑥 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝑥 𝐵 ∈ dom vol))
6 iuneq1 4975 . . . . 5 (𝑦 = 𝑥 𝑘𝑦 𝐵 = 𝑘𝑥 𝐵)
76eleq1d 2814 . . . 4 (𝑦 = 𝑥 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝑥 𝐵 ∈ dom vol))
85, 7imbi12d 344 . . 3 (𝑦 = 𝑥 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol)))
9 raleq 3298 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
10 iuneq1 4975 . . . . 5 (𝑦 = (𝑥 ∪ {𝑧}) → 𝑘𝑦 𝐵 = 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵)
1110eleq1d 2814 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
129, 11imbi12d 344 . . 3 (𝑦 = (𝑥 ∪ {𝑧}) → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
13 raleq 3298 . . . 4 (𝑦 = 𝐴 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝐴 𝐵 ∈ dom vol))
14 iuneq1 4975 . . . . 5 (𝑦 = 𝐴 𝑘𝑦 𝐵 = 𝑘𝐴 𝐵)
1514eleq1d 2814 . . . 4 (𝑦 = 𝐴 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝐴 𝐵 ∈ dom vol))
1613, 15imbi12d 344 . . 3 (𝑦 = 𝐴 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol)))
17 0iun 5030 . . . . 5 𝑘 ∈ ∅ 𝐵 = ∅
18 0mbl 25447 . . . . 5 ∅ ∈ dom vol
1917, 18eqeltri 2825 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ dom vol
2019a1i 11 . . 3 (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)
21 ssun1 4144 . . . . . . 7 𝑥 ⊆ (𝑥 ∪ {𝑧})
22 ssralv 4018 . . . . . . 7 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol))
2321, 22ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol)
2423imim1i 63 . . . . 5 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol))
25 ssun2 4145 . . . . . . 7 {𝑧} ⊆ (𝑥 ∪ {𝑧})
26 ssralv 4018 . . . . . . 7 ({𝑧} ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol))
2725, 26ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
28 iunxun 5061 . . . . . . . 8 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 = ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵)
29 vex 3454 . . . . . . . . . . 11 𝑧 ∈ V
30 csbeq1 3868 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
3130eleq1d 2814 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol))
3229, 31ralsn 4648 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
33 nfv 1914 . . . . . . . . . . 11 𝑥 𝐵 ∈ dom vol
34 nfcsb1v 3889 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐵
3534nfel1 2909 . . . . . . . . . . 11 𝑘𝑥 / 𝑘𝐵 ∈ dom vol
36 csbeq1a 3879 . . . . . . . . . . . 12 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
3736eleq1d 2814 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐵 ∈ dom vol ↔ 𝑥 / 𝑘𝐵 ∈ dom vol))
3833, 35, 37cbvralw 3282 . . . . . . . . . 10 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ ∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol)
39 nfcv 2892 . . . . . . . . . . . . 13 𝑥𝐵
4039, 34, 36cbviun 5003 . . . . . . . . . . . 12 𝑘 ∈ {𝑧}𝐵 = 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵
4129, 30iunxsn 5058 . . . . . . . . . . . 12 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵
4240, 41eqtri 2753 . . . . . . . . . . 11 𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵
4342eleq1i 2820 . . . . . . . . . 10 ( 𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
4432, 38, 433bitr4i 303 . . . . . . . . 9 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
45 unmbl 25445 . . . . . . . . 9 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4644, 45sylan2b 594 . . . . . . . 8 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4728, 46eqeltrid 2833 . . . . . . 7 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)
4847expcom 413 . . . . . 6 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
4927, 48syl 17 . . . . 5 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5024, 49sylcom 30 . . . 4 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5150a1i 11 . . 3 (𝑥 ∈ Fin → ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
524, 8, 12, 16, 20, 51findcard2 9134 . 2 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol))
5352imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  csb 3865  cun 3915  wss 3917  c0 4299  {csn 4592   ciun 4958  dom cdm 5641  Fincfn 8921  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373
This theorem is referenced by:  volfiniun  25455  iunmbl  25461  volsup  25464  iunmbl2  25465  uniioovol  25487  uniioombllem4  25494  uniioombllem5  25495  dyadmbl  25508  i1fima  25586  i1fd  25589  i1fadd  25603  i1fmul  25604  volfiniune  34227  volsupnfl  37666  itg2addnclem2  37673  ftc1anclem6  37699
  Copyright terms: Public domain W3C validator