MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finiunmbl Structured version   Visualization version   GIF version

Theorem finiunmbl 24139
Description: A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.)
Assertion
Ref Expression
finiunmbl ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem finiunmbl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3405 . . . 4 (𝑦 = ∅ → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ dom vol))
2 iuneq1 4927 . . . . 5 (𝑦 = ∅ → 𝑘𝑦 𝐵 = 𝑘 ∈ ∅ 𝐵)
32eleq1d 2897 . . . 4 (𝑦 = ∅ → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ ∅ 𝐵 ∈ dom vol))
41, 3imbi12d 347 . . 3 (𝑦 = ∅ → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)))
5 raleq 3405 . . . 4 (𝑦 = 𝑥 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝑥 𝐵 ∈ dom vol))
6 iuneq1 4927 . . . . 5 (𝑦 = 𝑥 𝑘𝑦 𝐵 = 𝑘𝑥 𝐵)
76eleq1d 2897 . . . 4 (𝑦 = 𝑥 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝑥 𝐵 ∈ dom vol))
85, 7imbi12d 347 . . 3 (𝑦 = 𝑥 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol)))
9 raleq 3405 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
10 iuneq1 4927 . . . . 5 (𝑦 = (𝑥 ∪ {𝑧}) → 𝑘𝑦 𝐵 = 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵)
1110eleq1d 2897 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
129, 11imbi12d 347 . . 3 (𝑦 = (𝑥 ∪ {𝑧}) → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
13 raleq 3405 . . . 4 (𝑦 = 𝐴 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝐴 𝐵 ∈ dom vol))
14 iuneq1 4927 . . . . 5 (𝑦 = 𝐴 𝑘𝑦 𝐵 = 𝑘𝐴 𝐵)
1514eleq1d 2897 . . . 4 (𝑦 = 𝐴 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝐴 𝐵 ∈ dom vol))
1613, 15imbi12d 347 . . 3 (𝑦 = 𝐴 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol)))
17 0iun 4978 . . . . 5 𝑘 ∈ ∅ 𝐵 = ∅
18 0mbl 24134 . . . . 5 ∅ ∈ dom vol
1917, 18eqeltri 2909 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ dom vol
2019a1i 11 . . 3 (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)
21 ssun1 4147 . . . . . . 7 𝑥 ⊆ (𝑥 ∪ {𝑧})
22 ssralv 4032 . . . . . . 7 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol))
2321, 22ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol)
2423imim1i 63 . . . . 5 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol))
25 ssun2 4148 . . . . . . 7 {𝑧} ⊆ (𝑥 ∪ {𝑧})
26 ssralv 4032 . . . . . . 7 ({𝑧} ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol))
2725, 26ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
28 iunxun 5008 . . . . . . . 8 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 = ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵)
29 vex 3497 . . . . . . . . . . 11 𝑧 ∈ V
30 csbeq1 3885 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
3130eleq1d 2897 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol))
3229, 31ralsn 4612 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
33 nfv 1911 . . . . . . . . . . 11 𝑥 𝐵 ∈ dom vol
34 nfcsb1v 3906 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐵
3534nfel1 2994 . . . . . . . . . . 11 𝑘𝑥 / 𝑘𝐵 ∈ dom vol
36 csbeq1a 3896 . . . . . . . . . . . 12 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
3736eleq1d 2897 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐵 ∈ dom vol ↔ 𝑥 / 𝑘𝐵 ∈ dom vol))
3833, 35, 37cbvralw 3441 . . . . . . . . . 10 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ ∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol)
39 nfcv 2977 . . . . . . . . . . . . 13 𝑥𝐵
4039, 34, 36cbviun 4953 . . . . . . . . . . . 12 𝑘 ∈ {𝑧}𝐵 = 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵
4129, 30iunxsn 5005 . . . . . . . . . . . 12 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵
4240, 41eqtri 2844 . . . . . . . . . . 11 𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵
4342eleq1i 2903 . . . . . . . . . 10 ( 𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
4432, 38, 433bitr4i 305 . . . . . . . . 9 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
45 unmbl 24132 . . . . . . . . 9 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4644, 45sylan2b 595 . . . . . . . 8 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4728, 46eqeltrid 2917 . . . . . . 7 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)
4847expcom 416 . . . . . 6 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
4927, 48syl 17 . . . . 5 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5024, 49sylcom 30 . . . 4 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5150a1i 11 . . 3 (𝑥 ∈ Fin → ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
524, 8, 12, 16, 20, 51findcard2 8752 . 2 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol))
5352imp 409 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  csb 3882  cun 3933  wss 3935  c0 4290  {csn 4560   ciun 4911  dom cdm 5549  Fincfn 8503  volcvol 24058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060
This theorem is referenced by:  volfiniun  24142  iunmbl  24148  volsup  24151  iunmbl2  24152  uniioovol  24174  uniioombllem4  24181  uniioombllem5  24182  dyadmbl  24195  i1fima  24273  i1fd  24276  i1fadd  24290  i1fmul  24291  volfiniune  31484  volsupnfl  34931  itg2addnclem2  34938  ftc1anclem6  34966
  Copyright terms: Public domain W3C validator