MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finiunmbl Structured version   Visualization version   GIF version

Theorem finiunmbl 25461
Description: A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.)
Assertion
Ref Expression
finiunmbl ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem finiunmbl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3287 . . . 4 (𝑦 = ∅ → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ dom vol))
2 iuneq1 4961 . . . . 5 (𝑦 = ∅ → 𝑘𝑦 𝐵 = 𝑘 ∈ ∅ 𝐵)
32eleq1d 2813 . . . 4 (𝑦 = ∅ → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ ∅ 𝐵 ∈ dom vol))
41, 3imbi12d 344 . . 3 (𝑦 = ∅ → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)))
5 raleq 3287 . . . 4 (𝑦 = 𝑥 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝑥 𝐵 ∈ dom vol))
6 iuneq1 4961 . . . . 5 (𝑦 = 𝑥 𝑘𝑦 𝐵 = 𝑘𝑥 𝐵)
76eleq1d 2813 . . . 4 (𝑦 = 𝑥 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝑥 𝐵 ∈ dom vol))
85, 7imbi12d 344 . . 3 (𝑦 = 𝑥 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol)))
9 raleq 3287 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
10 iuneq1 4961 . . . . 5 (𝑦 = (𝑥 ∪ {𝑧}) → 𝑘𝑦 𝐵 = 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵)
1110eleq1d 2813 . . . 4 (𝑦 = (𝑥 ∪ {𝑧}) → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
129, 11imbi12d 344 . . 3 (𝑦 = (𝑥 ∪ {𝑧}) → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
13 raleq 3287 . . . 4 (𝑦 = 𝐴 → (∀𝑘𝑦 𝐵 ∈ dom vol ↔ ∀𝑘𝐴 𝐵 ∈ dom vol))
14 iuneq1 4961 . . . . 5 (𝑦 = 𝐴 𝑘𝑦 𝐵 = 𝑘𝐴 𝐵)
1514eleq1d 2813 . . . 4 (𝑦 = 𝐴 → ( 𝑘𝑦 𝐵 ∈ dom vol ↔ 𝑘𝐴 𝐵 ∈ dom vol))
1613, 15imbi12d 344 . . 3 (𝑦 = 𝐴 → ((∀𝑘𝑦 𝐵 ∈ dom vol → 𝑘𝑦 𝐵 ∈ dom vol) ↔ (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol)))
17 0iun 5015 . . . . 5 𝑘 ∈ ∅ 𝐵 = ∅
18 0mbl 25456 . . . . 5 ∅ ∈ dom vol
1917, 18eqeltri 2824 . . . 4 𝑘 ∈ ∅ 𝐵 ∈ dom vol
2019a1i 11 . . 3 (∀𝑘 ∈ ∅ 𝐵 ∈ dom vol → 𝑘 ∈ ∅ 𝐵 ∈ dom vol)
21 ssun1 4131 . . . . . . 7 𝑥 ⊆ (𝑥 ∪ {𝑧})
22 ssralv 4006 . . . . . . 7 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol))
2321, 22ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘𝑥 𝐵 ∈ dom vol)
2423imim1i 63 . . . . 5 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol))
25 ssun2 4132 . . . . . . 7 {𝑧} ⊆ (𝑥 ∪ {𝑧})
26 ssralv 4006 . . . . . . 7 ({𝑧} ⊆ (𝑥 ∪ {𝑧}) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol))
2725, 26ax-mp 5 . . . . . 6 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
28 iunxun 5046 . . . . . . . 8 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 = ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵)
29 vex 3442 . . . . . . . . . . 11 𝑧 ∈ V
30 csbeq1 3856 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵)
3130eleq1d 2813 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol))
3229, 31ralsn 4635 . . . . . . . . . 10 (∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
33 nfv 1914 . . . . . . . . . . 11 𝑥 𝐵 ∈ dom vol
34 nfcsb1v 3877 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐵
3534nfel1 2908 . . . . . . . . . . 11 𝑘𝑥 / 𝑘𝐵 ∈ dom vol
36 csbeq1a 3867 . . . . . . . . . . . 12 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
3736eleq1d 2813 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐵 ∈ dom vol ↔ 𝑥 / 𝑘𝐵 ∈ dom vol))
3833, 35, 37cbvralw 3272 . . . . . . . . . 10 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ ∀𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 ∈ dom vol)
39 nfcv 2891 . . . . . . . . . . . . 13 𝑥𝐵
4039, 34, 36cbviun 4988 . . . . . . . . . . . 12 𝑘 ∈ {𝑧}𝐵 = 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵
4129, 30iunxsn 5043 . . . . . . . . . . . 12 𝑥 ∈ {𝑧}𝑥 / 𝑘𝐵 = 𝑧 / 𝑘𝐵
4240, 41eqtri 2752 . . . . . . . . . . 11 𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵
4342eleq1i 2819 . . . . . . . . . 10 ( 𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑧 / 𝑘𝐵 ∈ dom vol)
4432, 38, 433bitr4i 303 . . . . . . . . 9 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol ↔ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol)
45 unmbl 25454 . . . . . . . . 9 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ 𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4644, 45sylan2b 594 . . . . . . . 8 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → ( 𝑘𝑥 𝐵 𝑘 ∈ {𝑧}𝐵) ∈ dom vol)
4728, 46eqeltrid 2832 . . . . . . 7 (( 𝑘𝑥 𝐵 ∈ dom vol ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol) → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)
4847expcom 413 . . . . . 6 (∀𝑘 ∈ {𝑧}𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
4927, 48syl 17 . . . . 5 (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → ( 𝑘𝑥 𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5024, 49sylcom 30 . . . 4 ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol))
5150a1i 11 . . 3 (𝑥 ∈ Fin → ((∀𝑘𝑥 𝐵 ∈ dom vol → 𝑘𝑥 𝐵 ∈ dom vol) → (∀𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol → 𝑘 ∈ (𝑥 ∪ {𝑧})𝐵 ∈ dom vol)))
524, 8, 12, 16, 20, 51findcard2 9088 . 2 (𝐴 ∈ Fin → (∀𝑘𝐴 𝐵 ∈ dom vol → 𝑘𝐴 𝐵 ∈ dom vol))
5352imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ dom vol) → 𝑘𝐴 𝐵 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3853  cun 3903  wss 3905  c0 4286  {csn 4579   ciun 4944  dom cdm 5623  Fincfn 8879  volcvol 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382
This theorem is referenced by:  volfiniun  25464  iunmbl  25470  volsup  25473  iunmbl2  25474  uniioovol  25496  uniioombllem4  25503  uniioombllem5  25504  dyadmbl  25517  i1fima  25595  i1fd  25598  i1fadd  25612  i1fmul  25613  volfiniune  34196  volsupnfl  37644  itg2addnclem2  37651  ftc1anclem6  37677
  Copyright terms: Public domain W3C validator