MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuncmp Structured version   Visualization version   GIF version

Theorem fiuncmp 21487
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
fiuncmp.1 𝑋 = 𝐽
Assertion
Ref Expression
fiuncmp ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝐵(𝑥)   𝑋(𝑥)

Proof of Theorem fiuncmp
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3783 . 2 𝐴𝐴
2 simp2 1167 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → 𝐴 ∈ Fin)
3 sseq1 3786 . . . . . 6 (𝑡 = ∅ → (𝑡𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 4690 . . . . . . . . 9 (𝑡 = ∅ → 𝑥𝑡 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 4733 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5syl6eq 2815 . . . . . . . 8 (𝑡 = ∅ → 𝑥𝑡 𝐵 = ∅)
76oveq2d 6858 . . . . . . 7 (𝑡 = ∅ → (𝐽t 𝑥𝑡 𝐵) = (𝐽t ∅))
87eleq1d 2829 . . . . . 6 (𝑡 = ∅ → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t ∅) ∈ Comp))
93, 8imbi12d 335 . . . . 5 (𝑡 = ∅ → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp)))
109imbi2d 331 . . . 4 (𝑡 = ∅ → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp))))
11 sseq1 3786 . . . . . 6 (𝑡 = 𝑦 → (𝑡𝐴𝑦𝐴))
12 iuneq1 4690 . . . . . . . 8 (𝑡 = 𝑦 𝑥𝑡 𝐵 = 𝑥𝑦 𝐵)
1312oveq2d 6858 . . . . . . 7 (𝑡 = 𝑦 → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥𝑦 𝐵))
1413eleq1d 2829 . . . . . 6 (𝑡 = 𝑦 → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥𝑦 𝐵) ∈ Comp))
1511, 14imbi12d 335 . . . . 5 (𝑡 = 𝑦 → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)))
1615imbi2d 331 . . . 4 (𝑡 = 𝑦 → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp))))
17 sseq1 3786 . . . . . 6 (𝑡 = (𝑦 ∪ {𝑧}) → (𝑡𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
18 iuneq1 4690 . . . . . . . 8 (𝑡 = (𝑦 ∪ {𝑧}) → 𝑥𝑡 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
1918oveq2d 6858 . . . . . . 7 (𝑡 = (𝑦 ∪ {𝑧}) → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵))
2019eleq1d 2829 . . . . . 6 (𝑡 = (𝑦 ∪ {𝑧}) → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))
2117, 20imbi12d 335 . . . . 5 (𝑡 = (𝑦 ∪ {𝑧}) → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
2221imbi2d 331 . . . 4 (𝑡 = (𝑦 ∪ {𝑧}) → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))))
23 sseq1 3786 . . . . . 6 (𝑡 = 𝐴 → (𝑡𝐴𝐴𝐴))
24 iuneq1 4690 . . . . . . . 8 (𝑡 = 𝐴 𝑥𝑡 𝐵 = 𝑥𝐴 𝐵)
2524oveq2d 6858 . . . . . . 7 (𝑡 = 𝐴 → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥𝐴 𝐵))
2625eleq1d 2829 . . . . . 6 (𝑡 = 𝐴 → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥𝐴 𝐵) ∈ Comp))
2723, 26imbi12d 335 . . . . 5 (𝑡 = 𝐴 → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)))
2827imbi2d 331 . . . 4 (𝑡 = 𝐴 → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp))))
29 rest0 21253 . . . . . . 7 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
30 0cmp 21477 . . . . . . 7 {∅} ∈ Comp
3129, 30syl6eqel 2852 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) ∈ Comp)
32313ad2ant1 1163 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t ∅) ∈ Comp)
3332a1d 25 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp))
34 ssun1 3938 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 id 22 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3634, 35syl5ss 3772 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
3736imim1i 63 . . . . . . 7 ((𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp))
38 simpl1 1242 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝐽 ∈ Top)
39 iunxun 4762 . . . . . . . . . . . 12 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
40 simprr 789 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)
41 cmptop 21478 . . . . . . . . . . . . . 14 ((𝐽t 𝑥𝑦 𝐵) ∈ Comp → (𝐽t 𝑥𝑦 𝐵) ∈ Top)
42 restrcl 21241 . . . . . . . . . . . . . . 15 ((𝐽t 𝑥𝑦 𝐵) ∈ Top → (𝐽 ∈ V ∧ 𝑥𝑦 𝐵 ∈ V))
4342simprd 489 . . . . . . . . . . . . . 14 ((𝐽t 𝑥𝑦 𝐵) ∈ Top → 𝑥𝑦 𝐵 ∈ V)
4440, 41, 433syl 18 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥𝑦 𝐵 ∈ V)
45 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑡𝐵
46 nfcsb1v 3707 . . . . . . . . . . . . . . . 16 𝑥𝑡 / 𝑥𝐵
47 csbeq1a 3700 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡𝐵 = 𝑡 / 𝑥𝐵)
4845, 46, 47cbviun 4713 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑧}𝐵 = 𝑡 ∈ {𝑧}𝑡 / 𝑥𝐵
49 vex 3353 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
50 csbeq1 3694 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧𝑡 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
5149, 50iunxsn 4759 . . . . . . . . . . . . . . 15 𝑡 ∈ {𝑧}𝑡 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
5248, 51eqtri 2787 . . . . . . . . . . . . . 14 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
5350oveq2d 6858 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑧 → (𝐽t 𝑡 / 𝑥𝐵) = (𝐽t 𝑧 / 𝑥𝐵))
5453eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧 → ((𝐽t 𝑡 / 𝑥𝐵) ∈ Comp ↔ (𝐽t 𝑧 / 𝑥𝐵) ∈ Comp))
55 simpl3 1246 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp)
56 nfv 2009 . . . . . . . . . . . . . . . . . 18 𝑡(𝐽t 𝐵) ∈ Comp
57 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐽
58 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥t
5957, 58, 46nfov 6872 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐽t 𝑡 / 𝑥𝐵)
6059nfel1 2922 . . . . . . . . . . . . . . . . . 18 𝑥(𝐽t 𝑡 / 𝑥𝐵) ∈ Comp
6147oveq2d 6858 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑡 → (𝐽t 𝐵) = (𝐽t 𝑡 / 𝑥𝐵))
6261eleq1d 2829 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝐽t 𝐵) ∈ Comp ↔ (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp))
6356, 60, 62cbvral 3315 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp ↔ ∀𝑡𝐴 (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp)
6455, 63sylib 209 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ∀𝑡𝐴 (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp)
65 ssun2 3939 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑦 ∪ {𝑧})
66 simprl 787 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6765, 66syl5ss 3772 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → {𝑧} ⊆ 𝐴)
6849snss 4470 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6967, 68sylibr 225 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑧𝐴)
7054, 64, 69rspcdva 3467 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑧 / 𝑥𝐵) ∈ Comp)
71 cmptop 21478 . . . . . . . . . . . . . . 15 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Comp → (𝐽t 𝑧 / 𝑥𝐵) ∈ Top)
72 restrcl 21241 . . . . . . . . . . . . . . . 16 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Top → (𝐽 ∈ V ∧ 𝑧 / 𝑥𝐵 ∈ V))
7372simprd 489 . . . . . . . . . . . . . . 15 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Top → 𝑧 / 𝑥𝐵 ∈ V)
7470, 71, 733syl 18 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑧 / 𝑥𝐵 ∈ V)
7552, 74syl5eqel 2848 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥 ∈ {𝑧}𝐵 ∈ V)
76 unexg 7157 . . . . . . . . . . . . 13 (( 𝑥𝑦 𝐵 ∈ V ∧ 𝑥 ∈ {𝑧}𝐵 ∈ V) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ V)
7744, 75, 76syl2anc 579 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ V)
7839, 77syl5eqel 2848 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V)
79 resttop 21244 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top)
8038, 78, 79syl2anc 579 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top)
81 eqid 2765 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8281restin 21250 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8338, 78, 82syl2anc 579 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8483unieqd 4604 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
85 inss2 3993 . . . . . . . . . . . . . 14 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝐽
86 fiuncmp.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
8785, 86sseqtr4i 3798 . . . . . . . . . . . . 13 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝑋
8886restuni 21246 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝑋) → ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8938, 87, 88sylancl 580 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
9084, 89eqtr4d 2802 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽))
9152uneq2i 3926 . . . . . . . . . . . . . 14 ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵)
9239, 91eqtri 2787 . . . . . . . . . . . . 13 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵)
9392ineq1i 3972 . . . . . . . . . . . 12 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵) ∩ 𝐽)
94 indir 4040 . . . . . . . . . . . 12 (( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵) ∩ 𝐽) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))
9593, 94eqtri 2787 . . . . . . . . . . 11 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))
9690, 95syl6eq 2815 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽)))
97 inss1 3992 . . . . . . . . . . . . . . 15 ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥𝑦 𝐵
98 ssun1 3938 . . . . . . . . . . . . . . . 16 𝑥𝑦 𝐵 ⊆ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
9998, 39sseqtr4i 3798 . . . . . . . . . . . . . . 15 𝑥𝑦 𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
10097, 99sstri 3770 . . . . . . . . . . . . . 14 ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
101100a1i 11 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
102 restabs 21249 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10338, 101, 78, 102syl3anc 1490 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10481restin 21250 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑥𝑦 𝐵 ∈ V) → (𝐽t 𝑥𝑦 𝐵) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10538, 44, 104syl2anc 579 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥𝑦 𝐵) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
106103, 105eqtr4d 2802 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t 𝑥𝑦 𝐵))
107106, 40eqeltrd 2844 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) ∈ Comp)
108 inss1 3992 . . . . . . . . . . . . . . 15 (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑧 / 𝑥𝐵
109 ssun2 3939 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {𝑧}𝐵 ⊆ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
110109, 39sseqtr4i 3798 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑧}𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
11152, 110eqsstr3i 3796 . . . . . . . . . . . . . . 15 𝑧 / 𝑥𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
112108, 111sstri 3770 . . . . . . . . . . . . . 14 (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
113112a1i 11 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
114 restabs 21249 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11538, 113, 78, 114syl3anc 1490 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11681restin 21250 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑧 / 𝑥𝐵 ∈ V) → (𝐽t 𝑧 / 𝑥𝐵) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11738, 74, 116syl2anc 579 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑧 / 𝑥𝐵) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
118115, 117eqtr4d 2802 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t 𝑧 / 𝑥𝐵))
119118, 70eqeltrd 2844 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) ∈ Comp)
120 eqid 2765 . . . . . . . . . . 11 (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
121120uncmp 21486 . . . . . . . . . 10 ((((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top ∧ (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))) ∧ (((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) ∈ Comp ∧ ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)
12280, 96, 107, 119, 121syl22anc 867 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)
123122exp32 411 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐽t 𝑥𝑦 𝐵) ∈ Comp → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
124123a2d 29 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
12537, 124syl5 34 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
126125a2i 14 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
127126a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))))
12810, 16, 22, 28, 33, 127findcard2 8407 . . 3 (𝐴 ∈ Fin → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)))
1292, 128mpcom 38 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp))
1301, 129mpi 20 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  csb 3691  cun 3730  cin 3731  wss 3732  c0 4079  {csn 4334   cuni 4594   ciun 4676  (class class class)co 6842  Fincfn 8160  t crest 16349  Topctop 20977  Compccmp 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-fin 8164  df-fi 8524  df-rest 16351  df-topgen 16372  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470
This theorem is referenced by:  xkococnlem  21742
  Copyright terms: Public domain W3C validator