MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuncmp Structured version   Visualization version   GIF version

Theorem fiuncmp 22555
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
fiuncmp.1 𝑋 = 𝐽
Assertion
Ref Expression
fiuncmp ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hints:   𝐵(𝑥)   𝑋(𝑥)

Proof of Theorem fiuncmp
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . 2 𝐴𝐴
2 simp2 1136 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → 𝐴 ∈ Fin)
3 sseq1 3946 . . . . . 6 (𝑡 = ∅ → (𝑡𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 4940 . . . . . . . . 9 (𝑡 = ∅ → 𝑥𝑡 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 4992 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5eqtrdi 2794 . . . . . . . 8 (𝑡 = ∅ → 𝑥𝑡 𝐵 = ∅)
76oveq2d 7291 . . . . . . 7 (𝑡 = ∅ → (𝐽t 𝑥𝑡 𝐵) = (𝐽t ∅))
87eleq1d 2823 . . . . . 6 (𝑡 = ∅ → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t ∅) ∈ Comp))
93, 8imbi12d 345 . . . . 5 (𝑡 = ∅ → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp)))
109imbi2d 341 . . . 4 (𝑡 = ∅ → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp))))
11 sseq1 3946 . . . . . 6 (𝑡 = 𝑦 → (𝑡𝐴𝑦𝐴))
12 iuneq1 4940 . . . . . . . 8 (𝑡 = 𝑦 𝑥𝑡 𝐵 = 𝑥𝑦 𝐵)
1312oveq2d 7291 . . . . . . 7 (𝑡 = 𝑦 → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥𝑦 𝐵))
1413eleq1d 2823 . . . . . 6 (𝑡 = 𝑦 → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥𝑦 𝐵) ∈ Comp))
1511, 14imbi12d 345 . . . . 5 (𝑡 = 𝑦 → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)))
1615imbi2d 341 . . . 4 (𝑡 = 𝑦 → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp))))
17 sseq1 3946 . . . . . 6 (𝑡 = (𝑦 ∪ {𝑧}) → (𝑡𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
18 iuneq1 4940 . . . . . . . 8 (𝑡 = (𝑦 ∪ {𝑧}) → 𝑥𝑡 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
1918oveq2d 7291 . . . . . . 7 (𝑡 = (𝑦 ∪ {𝑧}) → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵))
2019eleq1d 2823 . . . . . 6 (𝑡 = (𝑦 ∪ {𝑧}) → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))
2117, 20imbi12d 345 . . . . 5 (𝑡 = (𝑦 ∪ {𝑧}) → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
2221imbi2d 341 . . . 4 (𝑡 = (𝑦 ∪ {𝑧}) → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))))
23 sseq1 3946 . . . . . 6 (𝑡 = 𝐴 → (𝑡𝐴𝐴𝐴))
24 iuneq1 4940 . . . . . . . 8 (𝑡 = 𝐴 𝑥𝑡 𝐵 = 𝑥𝐴 𝐵)
2524oveq2d 7291 . . . . . . 7 (𝑡 = 𝐴 → (𝐽t 𝑥𝑡 𝐵) = (𝐽t 𝑥𝐴 𝐵))
2625eleq1d 2823 . . . . . 6 (𝑡 = 𝐴 → ((𝐽t 𝑥𝑡 𝐵) ∈ Comp ↔ (𝐽t 𝑥𝐴 𝐵) ∈ Comp))
2723, 26imbi12d 345 . . . . 5 (𝑡 = 𝐴 → ((𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp) ↔ (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)))
2827imbi2d 341 . . . 4 (𝑡 = 𝐴 → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑡𝐴 → (𝐽t 𝑥𝑡 𝐵) ∈ Comp)) ↔ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp))))
29 rest0 22320 . . . . . . 7 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
30 0cmp 22545 . . . . . . 7 {∅} ∈ Comp
3129, 30eqeltrdi 2847 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) ∈ Comp)
32313ad2ant1 1132 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t ∅) ∈ Comp)
3332a1d 25 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (∅ ⊆ 𝐴 → (𝐽t ∅) ∈ Comp))
34 ssun1 4106 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 id 22 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3634, 35sstrid 3932 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
3736imim1i 63 . . . . . . 7 ((𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp))
38 simpl1 1190 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝐽 ∈ Top)
39 iunxun 5023 . . . . . . . . . . . 12 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
40 simprr 770 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)
41 cmptop 22546 . . . . . . . . . . . . . 14 ((𝐽t 𝑥𝑦 𝐵) ∈ Comp → (𝐽t 𝑥𝑦 𝐵) ∈ Top)
42 restrcl 22308 . . . . . . . . . . . . . . 15 ((𝐽t 𝑥𝑦 𝐵) ∈ Top → (𝐽 ∈ V ∧ 𝑥𝑦 𝐵 ∈ V))
4342simprd 496 . . . . . . . . . . . . . 14 ((𝐽t 𝑥𝑦 𝐵) ∈ Top → 𝑥𝑦 𝐵 ∈ V)
4440, 41, 433syl 18 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥𝑦 𝐵 ∈ V)
45 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑡𝐵
46 nfcsb1v 3857 . . . . . . . . . . . . . . . 16 𝑥𝑡 / 𝑥𝐵
47 csbeq1a 3846 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡𝐵 = 𝑡 / 𝑥𝐵)
4845, 46, 47cbviun 4966 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑧}𝐵 = 𝑡 ∈ {𝑧}𝑡 / 𝑥𝐵
49 vex 3436 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
50 csbeq1 3835 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧𝑡 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
5149, 50iunxsn 5020 . . . . . . . . . . . . . . 15 𝑡 ∈ {𝑧}𝑡 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
5248, 51eqtri 2766 . . . . . . . . . . . . . 14 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
5350oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑧 → (𝐽t 𝑡 / 𝑥𝐵) = (𝐽t 𝑧 / 𝑥𝐵))
5453eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧 → ((𝐽t 𝑡 / 𝑥𝐵) ∈ Comp ↔ (𝐽t 𝑧 / 𝑥𝐵) ∈ Comp))
55 simpl3 1192 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp)
56 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑡(𝐽t 𝐵) ∈ Comp
57 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐽
58 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥t
5957, 58, 46nfov 7305 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐽t 𝑡 / 𝑥𝐵)
6059nfel1 2923 . . . . . . . . . . . . . . . . . 18 𝑥(𝐽t 𝑡 / 𝑥𝐵) ∈ Comp
6147oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑡 → (𝐽t 𝐵) = (𝐽t 𝑡 / 𝑥𝐵))
6261eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝐽t 𝐵) ∈ Comp ↔ (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp))
6356, 60, 62cbvralw 3373 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp ↔ ∀𝑡𝐴 (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp)
6455, 63sylib 217 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ∀𝑡𝐴 (𝐽t 𝑡 / 𝑥𝐵) ∈ Comp)
65 ssun2 4107 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑦 ∪ {𝑧})
66 simprl 768 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6765, 66sstrid 3932 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → {𝑧} ⊆ 𝐴)
6849snss 4719 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6967, 68sylibr 233 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑧𝐴)
7054, 64, 69rspcdva 3562 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑧 / 𝑥𝐵) ∈ Comp)
71 cmptop 22546 . . . . . . . . . . . . . . 15 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Comp → (𝐽t 𝑧 / 𝑥𝐵) ∈ Top)
72 restrcl 22308 . . . . . . . . . . . . . . . 16 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Top → (𝐽 ∈ V ∧ 𝑧 / 𝑥𝐵 ∈ V))
7372simprd 496 . . . . . . . . . . . . . . 15 ((𝐽t 𝑧 / 𝑥𝐵) ∈ Top → 𝑧 / 𝑥𝐵 ∈ V)
7470, 71, 733syl 18 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑧 / 𝑥𝐵 ∈ V)
7552, 74eqeltrid 2843 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥 ∈ {𝑧}𝐵 ∈ V)
76 unexg 7599 . . . . . . . . . . . . 13 (( 𝑥𝑦 𝐵 ∈ V ∧ 𝑥 ∈ {𝑧}𝐵 ∈ V) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ V)
7744, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ V)
7839, 77eqeltrid 2843 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V)
79 resttop 22311 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top)
8038, 78, 79syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top)
81 eqid 2738 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
8281restin 22317 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8338, 78, 82syl2anc 584 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8483unieqd 4853 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
85 inss2 4163 . . . . . . . . . . . . . 14 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝐽
86 fiuncmp.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
8785, 86sseqtrri 3958 . . . . . . . . . . . . 13 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝑋
8886restuni 22313 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) ⊆ 𝑋) → ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
8938, 87, 88sylancl 586 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (𝐽t ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽)))
9084, 89eqtr4d 2781 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽))
9152uneq2i 4094 . . . . . . . . . . . . . 14 ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵)
9239, 91eqtri 2766 . . . . . . . . . . . . 13 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵)
9392ineq1i 4142 . . . . . . . . . . . 12 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵) ∩ 𝐽)
94 indir 4209 . . . . . . . . . . . 12 (( 𝑥𝑦 𝐵𝑧 / 𝑥𝐵) ∩ 𝐽) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))
9593, 94eqtri 2766 . . . . . . . . . . 11 ( 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝐽) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))
9690, 95eqtrdi 2794 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽)))
97 inss1 4162 . . . . . . . . . . . . . . 15 ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥𝑦 𝐵
98 ssun1 4106 . . . . . . . . . . . . . . . 16 𝑥𝑦 𝐵 ⊆ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
9998, 39sseqtrri 3958 . . . . . . . . . . . . . . 15 𝑥𝑦 𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
10097, 99sstri 3930 . . . . . . . . . . . . . 14 ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
101100a1i 11 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
102 restabs 22316 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ( 𝑥𝑦 𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10338, 101, 78, 102syl3anc 1370 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10481restin 22317 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑥𝑦 𝐵 ∈ V) → (𝐽t 𝑥𝑦 𝐵) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
10538, 44, 104syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥𝑦 𝐵) = (𝐽t ( 𝑥𝑦 𝐵 𝐽)))
106103, 105eqtr4d 2781 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) = (𝐽t 𝑥𝑦 𝐵))
107106, 40eqeltrd 2839 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) ∈ Comp)
108 inss1 4162 . . . . . . . . . . . . . . 15 (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑧 / 𝑥𝐵
109 ssun2 4107 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {𝑧}𝐵 ⊆ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
110109, 39sseqtrri 3958 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑧}𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
11152, 110eqsstrri 3956 . . . . . . . . . . . . . . 15 𝑧 / 𝑥𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
112108, 111sstri 3930 . . . . . . . . . . . . . 14 (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵
113112a1i 11 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
114 restabs 22316 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑧 / 𝑥𝐵 𝐽) ⊆ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ V) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11538, 113, 78, 114syl3anc 1370 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11681restin 22317 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑧 / 𝑥𝐵 ∈ V) → (𝐽t 𝑧 / 𝑥𝐵) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
11738, 74, 116syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑧 / 𝑥𝐵) = (𝐽t (𝑧 / 𝑥𝐵 𝐽)))
118115, 117eqtr4d 2781 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) = (𝐽t 𝑧 / 𝑥𝐵))
119118, 70eqeltrd 2839 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) ∈ Comp)
120 eqid 2738 . . . . . . . . . . 11 (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
121120uncmp 22554 . . . . . . . . . 10 ((((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Top ∧ (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) = (( 𝑥𝑦 𝐵 𝐽) ∪ (𝑧 / 𝑥𝐵 𝐽))) ∧ (((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t ( 𝑥𝑦 𝐵 𝐽)) ∈ Comp ∧ ((𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ↾t (𝑧 / 𝑥𝐵 𝐽)) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)
12280, 96, 107, 119, 121syl22anc 836 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)
123122exp32 421 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐽t 𝑥𝑦 𝐵) ∈ Comp → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
124123a2d 29 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
12537, 124syl5 34 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
126125a2i 14 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp)))
127126a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝑦𝐴 → (𝐽t 𝑥𝑦 𝐵) ∈ Comp)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝐽t 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ Comp))))
12810, 16, 22, 28, 33, 127findcard2 8947 . . 3 (𝐴 ∈ Fin → ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)))
1292, 128mpcom 38 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐴𝐴 → (𝐽t 𝑥𝐴 𝐵) ∈ Comp))
1301, 129mpi 20 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝐽t 𝐵) ∈ Comp) → (𝐽t 𝑥𝐴 𝐵) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  csb 3832  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   cuni 4839   ciun 4924  (class class class)co 7275  Fincfn 8733  t crest 17131  Topctop 22042  Compccmp 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538
This theorem is referenced by:  xkococnlem  22810
  Copyright terms: Public domain W3C validator