MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem4 Structured version   Visualization version   GIF version

Theorem prmreclem4 16940
Description: Lemma for prmrec 16943. Show by induction that the indexed (nondisjoint) union 𝑊𝑘 is at most the size of the prime reciprocal series. The key counting lemma is hashdvds 16795, to show that the number of numbers in 1...𝑁 that divide 𝑘 is at most 𝑁 / 𝑘. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem4 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem4
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . . . . 7 (𝑥 = 𝐾 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝐾))
21iuneq1d 4999 . . . . . 6 (𝑥 = 𝐾 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘))
32fveq2d 6890 . . . . 5 (𝑥 = 𝐾 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)))
41sumeq1d 15719 . . . . . 6 (𝑥 = 𝐾 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
54oveq2d 7429 . . . . 5 (𝑥 = 𝐾 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
63, 5breq12d 5136 . . . 4 (𝑥 = 𝐾 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
76imbi2d 340 . . 3 (𝑥 = 𝐾 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
8 oveq2 7421 . . . . . . 7 (𝑥 = 𝑗 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑗))
98iuneq1d 4999 . . . . . 6 (𝑥 = 𝑗 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘))
109fveq2d 6890 . . . . 5 (𝑥 = 𝑗 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)))
118sumeq1d 15719 . . . . . 6 (𝑥 = 𝑗 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1211oveq2d 7429 . . . . 5 (𝑥 = 𝑗 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
1310, 12breq12d 5136 . . . 4 (𝑥 = 𝑗 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
1413imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
15 oveq2 7421 . . . . . . 7 (𝑥 = (𝑗 + 1) → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...(𝑗 + 1)))
1615iuneq1d 4999 . . . . . 6 (𝑥 = (𝑗 + 1) → 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘))
1716fveq2d 6890 . . . . 5 (𝑥 = (𝑗 + 1) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)))
1815sumeq1d 15719 . . . . . 6 (𝑥 = (𝑗 + 1) → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1918oveq2d 7429 . . . . 5 (𝑥 = (𝑗 + 1) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2017, 19breq12d 5136 . . . 4 (𝑥 = (𝑗 + 1) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2120imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
22 oveq2 7421 . . . . . . 7 (𝑥 = 𝑁 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑁))
2322iuneq1d 4999 . . . . . 6 (𝑥 = 𝑁 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
2423fveq2d 6890 . . . . 5 (𝑥 = 𝑁 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
2522sumeq1d 15719 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2625oveq2d 7429 . . . . 5 (𝑥 = 𝑁 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2724, 26breq12d 5136 . . . 4 (𝑥 = 𝑁 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2827imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
29 0le0 12349 . . . . 5 0 ≤ 0
30 prmrec.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3130nncnd 12264 . . . . . 6 (𝜑𝑁 ∈ ℂ)
3231mul01d 11442 . . . . 5 (𝜑 → (𝑁 · 0) = 0)
3329, 32breqtrrid 5161 . . . 4 (𝜑 → 0 ≤ (𝑁 · 0))
34 prmrec.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
3534nnred 12263 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
3635ltp1d 12180 . . . . . . . . 9 (𝜑𝐾 < (𝐾 + 1))
3734nnzd 12623 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
3837peano2zd 12708 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℤ)
39 fzn 13562 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4038, 37, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4136, 40mpbid 232 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝐾) = ∅)
4241iuneq1d 4999 . . . . . . 7 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
43 0iun 5043 . . . . . . 7 𝑘 ∈ ∅ (𝑊𝑘) = ∅
4442, 43eqtrdi 2785 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = ∅)
4544fveq2d 6890 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = (♯‘∅))
46 hash0 14389 . . . . 5 (♯‘∅) = 0
4745, 46eqtrdi 2785 . . . 4 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = 0)
4841sumeq1d 15719 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
49 sum0 15740 . . . . . 6 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
5048, 49eqtrdi 2785 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
5150oveq2d 7429 . . . 4 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
5233, 47, 513brtr4d 5155 . . 3 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
53 fzfi 13995 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
54 elfzuz 13542 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑗) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
5534peano2nnd 12265 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 + 1) ∈ ℕ)
56 eluznn 12942 . . . . . . . . . . . . . . . . 17 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
5755, 56sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
58 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
59 breq1 5126 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
6058, 59anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
6160rabbidv 3427 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
62 prmrec.7 . . . . . . . . . . . . . . . . . . 19 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
63 ovex 7446 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ∈ V
6463rabex 5319 . . . . . . . . . . . . . . . . . . 19 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
6561, 62, 64fvmpt 6996 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
6665adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
67 ssrab2 4060 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
6866, 67eqsstrdi 4008 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
6957, 68syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
7054, 69sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑗)) → (𝑊𝑘) ⊆ (1...𝑁))
7170ralrimiva 3133 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7271adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
73 iunss 5025 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7472, 73sylibr 234 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
75 ssfi 9195 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
7653, 74, 75sylancr 587 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
77 hashcl 14378 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7876, 77syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7978nn0red 12571 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℝ)
8030nnred 12263 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℝ)
82 fzfid 13996 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...𝑗) ∈ Fin)
8355adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℕ)
8483, 54, 56syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → 𝑘 ∈ ℕ)
85 nnrecre 12290 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
86 0re 11245 . . . . . . . . . . . 12 0 ∈ ℝ
87 ifcl 4551 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8885, 86, 87sylancl 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8984, 88syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9082, 89fsumrecl 15753 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9181, 90remulcld 11273 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
92 prmnn 16694 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℙ → (𝑗 + 1) ∈ ℕ)
9392nnrecred 12299 . . . . . . . . . . 11 ((𝑗 + 1) ∈ ℙ → (1 / (𝑗 + 1)) ∈ ℝ)
9493adantl 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (1 / (𝑗 + 1)) ∈ ℝ)
95 0red 11246 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ∈ ℝ)
9694, 95ifclda 4541 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℝ)
9781, 96remulcld 11273 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) ∈ ℝ)
9879, 91, 97leadd1d 11839 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
99 eluzp1p1 12888 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝐾) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
10099adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
101 simpl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝜑)
102 elfzuz 13542 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
10388recnd 11271 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
10457, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
105101, 102, 104syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
106 eleq1 2821 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
107 oveq2 7421 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (1 / 𝑘) = (1 / (𝑗 + 1)))
108106, 107ifbieq1d 4530 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))
109100, 105, 108fsumm1 15770 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
110 eluzelz 12870 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ ℤ)
111110adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℤ)
112111zcnd 12706 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℂ)
113 ax-1cn 11195 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 pncan 11496 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
115112, 113, 114sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗 + 1) − 1) = 𝑗)
116115oveq2d 7429 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...((𝑗 + 1) − 1)) = ((𝐾 + 1)...𝑗))
117116sumeq1d 15719 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
118117oveq1d 7428 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
119109, 118eqtrd 2769 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
120119oveq2d 7429 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
12131adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℂ)
12290recnd 11271 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
12396recnd 11271 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℂ)
124121, 122, 123adddid 11267 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
125120, 124eqtrd 2769 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
126125breq2d 5135 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
12798, 126bitr4d 282 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
128102, 69sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
129128ralrimiva 3133 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
130129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
131 iunss 5025 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
132130, 131sylibr 234 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
133 ssfi 9195 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
13453, 132, 133sylancr 587 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
135 hashcl 14378 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
136134, 135syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
137136nn0red 12571 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ)
138 fveq2 6886 . . . . . . . . . . . . . 14 (𝑘 = (𝑗 + 1) → (𝑊𝑘) = (𝑊‘(𝑗 + 1)))
139138sseq1d 3995 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → ((𝑊𝑘) ⊆ (1...𝑁) ↔ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)))
14068ralrimiva 3133 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
141140adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
142 eluznn 12942 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
14334, 142sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
144143peano2nnd 12265 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℕ)
145139, 141, 144rspcdva 3606 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁))
146 ssfi 9195 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
14753, 145, 146sylancr 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
148 hashcl 14378 . . . . . . . . . . 11 ((𝑊‘(𝑗 + 1)) ∈ Fin → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
149147, 148syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
150149nn0red 12571 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℝ)
15179, 150readdcld 11272 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ∈ ℝ)
15279, 97readdcld 11272 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ)
15338adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
154 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
15534nncnd 12264 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
157 pncan 11496 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
158156, 113, 157sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1) − 1) = 𝐾)
159158fveq2d 6890 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) − 1)) = (ℤ𝐾))
160154, 159eleqtrrd 2836 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1)))
161 fzsuc2 13604 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℤ ∧ 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1))) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
162153, 160, 161syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
163162iuneq1d 4999 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘))
164 iunxun 5074 . . . . . . . . . . . 12 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘))
165 ovex 7446 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
166165, 138iunxsn 5071 . . . . . . . . . . . . 13 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘) = (𝑊‘(𝑗 + 1))
167166uneq2i 4145 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘)) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
168164, 167eqtri 2757 . . . . . . . . . . 11 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
169163, 168eqtrdi 2785 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1))))
170169fveq2d 6890 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) = (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))))
171 hashun2 14405 . . . . . . . . . 10 (( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ∈ Fin) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17276, 147, 171syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
173170, 172eqbrtrd 5145 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17481, 144nndivred 12302 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) ∈ ℝ)
175 flle 13821 . . . . . . . . . . . . . 14 ((𝑁 / (𝑗 + 1)) ∈ ℝ → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
176174, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
177 elfznn 13575 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
178177nncnd 12264 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
179178subid1d 11591 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → (𝑛 − 0) = 𝑛)
180179breq2d 5135 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → ((𝑗 + 1) ∥ (𝑛 − 0) ↔ (𝑗 + 1) ∥ 𝑛))
181180rabbiia 3423 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)} = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}
182181fveq2i 6889 . . . . . . . . . . . . . 14 (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
183 1zzd 12631 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 1 ∈ ℤ)
18430nnnn0d 12570 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
185 nn0uz 12902 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
186 1m1e0 12320 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
187186fveq2i 6889 . . . . . . . . . . . . . . . . . . 19 (ℤ‘(1 − 1)) = (ℤ‘0)
188185, 187eqtr4i 2760 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘(1 − 1))
189184, 188eleqtrdi 2843 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(1 − 1)))
190189adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ‘(1 − 1)))
191 0zd 12608 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 0 ∈ ℤ)
192144, 183, 190, 191hashdvds 16795 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))))
193121subid1d 11591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 − 0) = 𝑁)
194193fvoveq1d 7435 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘((𝑁 − 0) / (𝑗 + 1))) = (⌊‘(𝑁 / (𝑗 + 1))))
195186oveq1i 7423 . . . . . . . . . . . . . . . . . . . . 21 ((1 − 1) − 0) = (0 − 0)
196 0m0e0 12368 . . . . . . . . . . . . . . . . . . . . 21 (0 − 0) = 0
197195, 196eqtri 2757 . . . . . . . . . . . . . . . . . . . 20 ((1 − 1) − 0) = 0
198197oveq1i 7423 . . . . . . . . . . . . . . . . . . 19 (((1 − 1) − 0) / (𝑗 + 1)) = (0 / (𝑗 + 1))
199144nncnd 12264 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℂ)
200144nnne0d 12298 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ≠ 0)
201199, 200div0d 12024 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (ℤ𝐾)) → (0 / (𝑗 + 1)) = 0)
202198, 201eqtrid 2781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((1 − 1) − 0) / (𝑗 + 1)) = 0)
203202fveq2d 6890 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = (⌊‘0))
204 0z 12607 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
205 flid 13830 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (⌊‘0) = 0)
206204, 205ax-mp 5 . . . . . . . . . . . . . . . . 17 (⌊‘0) = 0
207203, 206eqtrdi 2785 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = 0)
208194, 207oveq12d 7431 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))) = ((⌊‘(𝑁 / (𝑗 + 1))) − 0))
209174flcld 13820 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℤ)
210209zcnd 12706 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℂ)
211210subid1d 11591 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘(𝑁 / (𝑗 + 1))) − 0) = (⌊‘(𝑁 / (𝑗 + 1))))
212192, 208, 2113eqtrd 2773 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (⌊‘(𝑁 / (𝑗 + 1))))
213182, 212eqtr3id 2783 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) = (⌊‘(𝑁 / (𝑗 + 1))))
214121, 199, 200divrecd 12028 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) = (𝑁 · (1 / (𝑗 + 1))))
215214eqcomd 2740 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (1 / (𝑗 + 1))) = (𝑁 / (𝑗 + 1)))
216176, 213, 2153brtr4d 5155 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
217216adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
218 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
219 breq1 5126 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝𝑛 ↔ (𝑗 + 1) ∥ 𝑛))
220218, 219anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑗 + 1) → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
221220rabbidv 3427 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑗 + 1) → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
22263rabex 5319 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} ∈ V
223221, 62, 222fvmpt 6996 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ ℕ → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
224144, 223syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
225224adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
226 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑗 + 1) ∈ ℙ)
227226biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → ((𝑗 + 1) ∥ 𝑛 ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
228227rabbidv 3427 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
229225, 228eqtr4d 2772 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
230229fveq2d 6890 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}))
231 iftrue 4511 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
232231adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
233232oveq2d 7429 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · (1 / (𝑗 + 1))))
234217, 230, 2333brtr4d 5155 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
23529a1i 11 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ≤ 0)
236 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛) → (𝑗 + 1) ∈ ℙ)
237236con3i 154 . . . . . . . . . . . . . . . 16 (¬ (𝑗 + 1) ∈ ℙ → ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
238237ralrimivw 3137 . . . . . . . . . . . . . . 15 (¬ (𝑗 + 1) ∈ ℙ → ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
239 rabeq0 4368 . . . . . . . . . . . . . . 15 ({𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅ ↔ ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
240238, 239sylibr 234 . . . . . . . . . . . . . 14 (¬ (𝑗 + 1) ∈ ℙ → {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅)
241224, 240sylan9eq 2789 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = ∅)
242241fveq2d 6890 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘∅))
243242, 46eqtrdi 2785 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = 0)
244 iffalse 4514 . . . . . . . . . . . . 13 (¬ (𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = 0)
245244oveq2d 7429 . . . . . . . . . . . 12 (¬ (𝑗 + 1) ∈ ℙ → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · 0))
24632adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · 0) = 0)
247245, 246sylan9eqr 2791 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = 0)
248235, 243, 2473brtr4d 5155 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
249234, 248pm2.61dan 812 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
250150, 97, 79, 249leadd2dd 11860 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
251137, 151, 152, 173, 250letrd 11400 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
252 fzfid 13996 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) ∈ Fin)
25357, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
254101, 102, 253syl2an 596 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
255252, 254fsumrecl 15753 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
25681, 255remulcld 11273 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
257 letr 11337 . . . . . . . 8 (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ ∧ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
258137, 152, 256, 257syl3anc 1372 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
259251, 258mpand 695 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
260127, 259sylbid 240 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
261260expcom 413 . . . 4 (𝑗 ∈ (ℤ𝐾) → (𝜑 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
262261a2d 29 . . 3 (𝑗 ∈ (ℤ𝐾) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
2637, 14, 21, 28, 52, 262uzind4i 12934 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
264263com12 32 1 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3419  cdif 3928  cun 3929  wss 3931  c0 4313  ifcif 4505  {csn 4606   ciun 4971   class class class wbr 5123  cmpt 5205  dom cdm 5665  cfv 6541  (class class class)co 7413  Fincfn 8967  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  0cn0 12509  cz 12596  cuz 12860  ...cfz 13529  cfl 13812  seqcseq 14024  chash 14352  cli 15503  Σcsu 15705  cdvds 16273  cprime 16691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-dvds 16274  df-prm 16692
This theorem is referenced by:  prmreclem5  16941
  Copyright terms: Public domain W3C validator