Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem4 Structured version   Visualization version   GIF version

Theorem prmreclem4 16245
 Description: Lemma for prmrec 16248. Show by induction that the indexed (nondisjoint) union 𝑊‘𝑘 is at most the size of the prime reciprocal series. The key counting lemma is hashdvds 16102, to show that the number of numbers in 1...𝑁 that divide 𝑘 is at most 𝑁 / 𝑘. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem4 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem4
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . . . 7 (𝑥 = 𝐾 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝐾))
21iuneq1d 4908 . . . . . 6 (𝑥 = 𝐾 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘))
32fveq2d 6649 . . . . 5 (𝑥 = 𝐾 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)))
41sumeq1d 15050 . . . . . 6 (𝑥 = 𝐾 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
54oveq2d 7151 . . . . 5 (𝑥 = 𝐾 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
63, 5breq12d 5043 . . . 4 (𝑥 = 𝐾 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
76imbi2d 344 . . 3 (𝑥 = 𝐾 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
8 oveq2 7143 . . . . . . 7 (𝑥 = 𝑗 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑗))
98iuneq1d 4908 . . . . . 6 (𝑥 = 𝑗 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘))
109fveq2d 6649 . . . . 5 (𝑥 = 𝑗 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)))
118sumeq1d 15050 . . . . . 6 (𝑥 = 𝑗 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1211oveq2d 7151 . . . . 5 (𝑥 = 𝑗 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
1310, 12breq12d 5043 . . . 4 (𝑥 = 𝑗 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
1413imbi2d 344 . . 3 (𝑥 = 𝑗 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
15 oveq2 7143 . . . . . . 7 (𝑥 = (𝑗 + 1) → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...(𝑗 + 1)))
1615iuneq1d 4908 . . . . . 6 (𝑥 = (𝑗 + 1) → 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘))
1716fveq2d 6649 . . . . 5 (𝑥 = (𝑗 + 1) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)))
1815sumeq1d 15050 . . . . . 6 (𝑥 = (𝑗 + 1) → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1918oveq2d 7151 . . . . 5 (𝑥 = (𝑗 + 1) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2017, 19breq12d 5043 . . . 4 (𝑥 = (𝑗 + 1) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2120imbi2d 344 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
22 oveq2 7143 . . . . . . 7 (𝑥 = 𝑁 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑁))
2322iuneq1d 4908 . . . . . 6 (𝑥 = 𝑁 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
2423fveq2d 6649 . . . . 5 (𝑥 = 𝑁 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
2522sumeq1d 15050 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2625oveq2d 7151 . . . . 5 (𝑥 = 𝑁 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2724, 26breq12d 5043 . . . 4 (𝑥 = 𝑁 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2827imbi2d 344 . . 3 (𝑥 = 𝑁 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
29 0le0 11726 . . . . 5 0 ≤ 0
30 prmrec.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3130nncnd 11641 . . . . . 6 (𝜑𝑁 ∈ ℂ)
3231mul01d 10828 . . . . 5 (𝜑 → (𝑁 · 0) = 0)
3329, 32breqtrrid 5068 . . . 4 (𝜑 → 0 ≤ (𝑁 · 0))
34 prmrec.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
3534nnred 11640 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
3635ltp1d 11559 . . . . . . . . 9 (𝜑𝐾 < (𝐾 + 1))
3734nnzd 12074 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
3837peano2zd 12078 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℤ)
39 fzn 12918 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4038, 37, 39syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4136, 40mpbid 235 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝐾) = ∅)
4241iuneq1d 4908 . . . . . . 7 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
43 0iun 4949 . . . . . . 7 𝑘 ∈ ∅ (𝑊𝑘) = ∅
4442, 43eqtrdi 2849 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = ∅)
4544fveq2d 6649 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = (♯‘∅))
46 hash0 13724 . . . . 5 (♯‘∅) = 0
4745, 46eqtrdi 2849 . . . 4 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = 0)
4841sumeq1d 15050 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
49 sum0 15070 . . . . . 6 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
5048, 49eqtrdi 2849 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
5150oveq2d 7151 . . . 4 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
5233, 47, 513brtr4d 5062 . . 3 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
53 fzfi 13335 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
54 elfzuz 12898 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑗) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
5534peano2nnd 11642 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 + 1) ∈ ℕ)
56 eluznn 12306 . . . . . . . . . . . . . . . . 17 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
5755, 56sylan 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
58 eleq1 2877 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
59 breq1 5033 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
6058, 59anbi12d 633 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
6160rabbidv 3427 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
62 prmrec.7 . . . . . . . . . . . . . . . . . . 19 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
63 ovex 7168 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ∈ V
6463rabex 5199 . . . . . . . . . . . . . . . . . . 19 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
6561, 62, 64fvmpt 6745 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
6665adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
67 ssrab2 4007 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
6866, 67eqsstrdi 3969 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
6957, 68syldan 594 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
7054, 69sylan2 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑗)) → (𝑊𝑘) ⊆ (1...𝑁))
7170ralrimiva 3149 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7271adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
73 iunss 4932 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7472, 73sylibr 237 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
75 ssfi 8722 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
7653, 74, 75sylancr 590 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
77 hashcl 13713 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7876, 77syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7978nn0red 11944 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℝ)
8030nnred 11640 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8180adantr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℝ)
82 fzfid 13336 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...𝑗) ∈ Fin)
8355adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℕ)
8483, 54, 56syl2an 598 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → 𝑘 ∈ ℕ)
85 nnrecre 11667 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
86 0re 10632 . . . . . . . . . . . 12 0 ∈ ℝ
87 ifcl 4469 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8885, 86, 87sylancl 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8984, 88syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9082, 89fsumrecl 15083 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9181, 90remulcld 10660 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
92 prmnn 16008 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℙ → (𝑗 + 1) ∈ ℕ)
9392nnrecred 11676 . . . . . . . . . . 11 ((𝑗 + 1) ∈ ℙ → (1 / (𝑗 + 1)) ∈ ℝ)
9493adantl 485 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (1 / (𝑗 + 1)) ∈ ℝ)
95 0red 10633 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ∈ ℝ)
9694, 95ifclda 4459 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℝ)
9781, 96remulcld 10660 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) ∈ ℝ)
9879, 91, 97leadd1d 11223 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
99 eluzp1p1 12258 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝐾) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
10099adantl 485 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
101 simpl 486 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝜑)
102 elfzuz 12898 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
10388recnd 10658 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
10457, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
105101, 102, 104syl2an 598 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
106 eleq1 2877 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
107 oveq2 7143 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (1 / 𝑘) = (1 / (𝑗 + 1)))
108106, 107ifbieq1d 4448 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))
109100, 105, 108fsumm1 15098 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
110 eluzelz 12241 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ ℤ)
111110adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℤ)
112111zcnd 12076 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℂ)
113 ax-1cn 10584 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 pncan 10881 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
115112, 113, 114sylancl 589 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗 + 1) − 1) = 𝑗)
116115oveq2d 7151 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...((𝑗 + 1) − 1)) = ((𝐾 + 1)...𝑗))
117116sumeq1d 15050 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
118117oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
119109, 118eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
120119oveq2d 7151 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
12131adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℂ)
12290recnd 10658 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
12396recnd 10658 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℂ)
124121, 122, 123adddid 10654 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
125120, 124eqtrd 2833 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
126125breq2d 5042 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
12798, 126bitr4d 285 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
128102, 69sylan2 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
129128ralrimiva 3149 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
130129adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
131 iunss 4932 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
132130, 131sylibr 237 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
133 ssfi 8722 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
13453, 132, 133sylancr 590 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
135 hashcl 13713 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
136134, 135syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
137136nn0red 11944 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ)
138 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = (𝑗 + 1) → (𝑊𝑘) = (𝑊‘(𝑗 + 1)))
139138sseq1d 3946 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → ((𝑊𝑘) ⊆ (1...𝑁) ↔ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)))
14068ralrimiva 3149 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
141140adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
142 eluznn 12306 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
14334, 142sylan 583 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
144143peano2nnd 11642 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℕ)
145139, 141, 144rspcdva 3573 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁))
146 ssfi 8722 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
14753, 145, 146sylancr 590 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
148 hashcl 13713 . . . . . . . . . . 11 ((𝑊‘(𝑗 + 1)) ∈ Fin → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
149147, 148syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
150149nn0red 11944 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℝ)
15179, 150readdcld 10659 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ∈ ℝ)
15279, 97readdcld 10659 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ)
15338adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
154 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
15534nncnd 11641 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
156155adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
157 pncan 10881 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
158156, 113, 157sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1) − 1) = 𝐾)
159158fveq2d 6649 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) − 1)) = (ℤ𝐾))
160154, 159eleqtrrd 2893 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1)))
161 fzsuc2 12960 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℤ ∧ 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1))) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
162153, 160, 161syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
163162iuneq1d 4908 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘))
164 iunxun 4979 . . . . . . . . . . . 12 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘))
165 ovex 7168 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
166165, 138iunxsn 4976 . . . . . . . . . . . . 13 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘) = (𝑊‘(𝑗 + 1))
167166uneq2i 4087 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘)) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
168164, 167eqtri 2821 . . . . . . . . . . 11 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
169163, 168eqtrdi 2849 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1))))
170169fveq2d 6649 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) = (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))))
171 hashun2 13740 . . . . . . . . . 10 (( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ∈ Fin) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17276, 147, 171syl2anc 587 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
173170, 172eqbrtrd 5052 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17481, 144nndivred 11679 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) ∈ ℝ)
175 flle 13164 . . . . . . . . . . . . . 14 ((𝑁 / (𝑗 + 1)) ∈ ℝ → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
176174, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
177 elfznn 12931 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
178177nncnd 11641 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
179178subid1d 10975 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → (𝑛 − 0) = 𝑛)
180179breq2d 5042 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → ((𝑗 + 1) ∥ (𝑛 − 0) ↔ (𝑗 + 1) ∥ 𝑛))
181180rabbiia 3419 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)} = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}
182181fveq2i 6648 . . . . . . . . . . . . . 14 (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
183 1zzd 12001 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 1 ∈ ℤ)
18430nnnn0d 11943 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
185 nn0uz 12268 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
186 1m1e0 11697 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
187186fveq2i 6648 . . . . . . . . . . . . . . . . . . 19 (ℤ‘(1 − 1)) = (ℤ‘0)
188185, 187eqtr4i 2824 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘(1 − 1))
189184, 188eleqtrdi 2900 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(1 − 1)))
190189adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ‘(1 − 1)))
191 0zd 11981 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 0 ∈ ℤ)
192144, 183, 190, 191hashdvds 16102 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))))
193121subid1d 10975 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 − 0) = 𝑁)
194193fvoveq1d 7157 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘((𝑁 − 0) / (𝑗 + 1))) = (⌊‘(𝑁 / (𝑗 + 1))))
195186oveq1i 7145 . . . . . . . . . . . . . . . . . . . . 21 ((1 − 1) − 0) = (0 − 0)
196 0m0e0 11745 . . . . . . . . . . . . . . . . . . . . 21 (0 − 0) = 0
197195, 196eqtri 2821 . . . . . . . . . . . . . . . . . . . 20 ((1 − 1) − 0) = 0
198197oveq1i 7145 . . . . . . . . . . . . . . . . . . 19 (((1 − 1) − 0) / (𝑗 + 1)) = (0 / (𝑗 + 1))
199144nncnd 11641 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℂ)
200144nnne0d 11675 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ≠ 0)
201199, 200div0d 11404 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (ℤ𝐾)) → (0 / (𝑗 + 1)) = 0)
202198, 201syl5eq 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((1 − 1) − 0) / (𝑗 + 1)) = 0)
203202fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = (⌊‘0))
204 0z 11980 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
205 flid 13173 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (⌊‘0) = 0)
206204, 205ax-mp 5 . . . . . . . . . . . . . . . . 17 (⌊‘0) = 0
207203, 206eqtrdi 2849 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = 0)
208194, 207oveq12d 7153 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))) = ((⌊‘(𝑁 / (𝑗 + 1))) − 0))
209174flcld 13163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℤ)
210209zcnd 12076 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℂ)
211210subid1d 10975 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘(𝑁 / (𝑗 + 1))) − 0) = (⌊‘(𝑁 / (𝑗 + 1))))
212192, 208, 2113eqtrd 2837 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (⌊‘(𝑁 / (𝑗 + 1))))
213182, 212syl5eqr 2847 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) = (⌊‘(𝑁 / (𝑗 + 1))))
214121, 199, 200divrecd 11408 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) = (𝑁 · (1 / (𝑗 + 1))))
215214eqcomd 2804 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (1 / (𝑗 + 1))) = (𝑁 / (𝑗 + 1)))
216176, 213, 2153brtr4d 5062 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
217216adantr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
218 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
219 breq1 5033 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝𝑛 ↔ (𝑗 + 1) ∥ 𝑛))
220218, 219anbi12d 633 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑗 + 1) → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
221220rabbidv 3427 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑗 + 1) → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
22263rabex 5199 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} ∈ V
223221, 62, 222fvmpt 6745 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ ℕ → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
224144, 223syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
225224adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
226 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑗 + 1) ∈ ℙ)
227226biantrurd 536 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → ((𝑗 + 1) ∥ 𝑛 ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
228227rabbidv 3427 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
229225, 228eqtr4d 2836 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
230229fveq2d 6649 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}))
231 iftrue 4431 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
232231adantl 485 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
233232oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · (1 / (𝑗 + 1))))
234217, 230, 2333brtr4d 5062 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
23529a1i 11 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ≤ 0)
236 simpl 486 . . . . . . . . . . . . . . . . 17 (((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛) → (𝑗 + 1) ∈ ℙ)
237236con3i 157 . . . . . . . . . . . . . . . 16 (¬ (𝑗 + 1) ∈ ℙ → ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
238237ralrimivw 3150 . . . . . . . . . . . . . . 15 (¬ (𝑗 + 1) ∈ ℙ → ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
239 rabeq0 4292 . . . . . . . . . . . . . . 15 ({𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅ ↔ ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
240238, 239sylibr 237 . . . . . . . . . . . . . 14 (¬ (𝑗 + 1) ∈ ℙ → {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅)
241224, 240sylan9eq 2853 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = ∅)
242241fveq2d 6649 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘∅))
243242, 46eqtrdi 2849 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = 0)
244 iffalse 4434 . . . . . . . . . . . . 13 (¬ (𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = 0)
245244oveq2d 7151 . . . . . . . . . . . 12 (¬ (𝑗 + 1) ∈ ℙ → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · 0))
24632adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · 0) = 0)
247245, 246sylan9eqr 2855 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = 0)
248235, 243, 2473brtr4d 5062 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
249234, 248pm2.61dan 812 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
250150, 97, 79, 249leadd2dd 11244 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
251137, 151, 152, 173, 250letrd 10786 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
252 fzfid 13336 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) ∈ Fin)
25357, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
254101, 102, 253syl2an 598 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
255252, 254fsumrecl 15083 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
25681, 255remulcld 10660 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
257 letr 10723 . . . . . . . 8 (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ ∧ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
258137, 152, 256, 257syl3anc 1368 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
259251, 258mpand 694 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
260127, 259sylbid 243 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
261260expcom 417 . . . 4 (𝑗 ∈ (ℤ𝐾) → (𝜑 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
262261a2d 29 . . 3 (𝑗 ∈ (ℤ𝐾) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
2637, 14, 21, 28, 52, 262uzind4i 12298 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
264263com12 32 1 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110   ∖ cdif 3878   ∪ cun 3879   ⊆ wss 3881  ∅c0 4243  ifcif 4425  {csn 4525  ∪ ciun 4881   class class class wbr 5030   ↦ cmpt 5110  dom cdm 5519  ‘cfv 6324  (class class class)co 7135  Fincfn 8492  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   ≤ cle 10665   − cmin 10859   / cdiv 11286  ℕcn 11625  2c2 11680  ℕ0cn0 11885  ℤcz 11969  ℤ≥cuz 12231  ...cfz 12885  ⌊cfl 13155  seqcseq 13364  ♯chash 13686   ⇝ cli 14833  Σcsu 15034   ∥ cdvds 15599  ℙcprime 16005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-prm 16006 This theorem is referenced by:  prmreclem5  16246
 Copyright terms: Public domain W3C validator