MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem4 Structured version   Visualization version   GIF version

Theorem prmreclem4 16453
Description: Lemma for prmrec 16456. Show by induction that the indexed (nondisjoint) union 𝑊𝑘 is at most the size of the prime reciprocal series. The key counting lemma is hashdvds 16309, to show that the number of numbers in 1...𝑁 that divide 𝑘 is at most 𝑁 / 𝑘. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem4 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem4
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7210 . . . . . . 7 (𝑥 = 𝐾 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝐾))
21iuneq1d 4921 . . . . . 6 (𝑥 = 𝐾 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘))
32fveq2d 6710 . . . . 5 (𝑥 = 𝐾 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)))
41sumeq1d 15248 . . . . . 6 (𝑥 = 𝐾 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
54oveq2d 7218 . . . . 5 (𝑥 = 𝐾 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
63, 5breq12d 5056 . . . 4 (𝑥 = 𝐾 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
76imbi2d 344 . . 3 (𝑥 = 𝐾 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
8 oveq2 7210 . . . . . . 7 (𝑥 = 𝑗 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑗))
98iuneq1d 4921 . . . . . 6 (𝑥 = 𝑗 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘))
109fveq2d 6710 . . . . 5 (𝑥 = 𝑗 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)))
118sumeq1d 15248 . . . . . 6 (𝑥 = 𝑗 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1211oveq2d 7218 . . . . 5 (𝑥 = 𝑗 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
1310, 12breq12d 5056 . . . 4 (𝑥 = 𝑗 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
1413imbi2d 344 . . 3 (𝑥 = 𝑗 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
15 oveq2 7210 . . . . . . 7 (𝑥 = (𝑗 + 1) → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...(𝑗 + 1)))
1615iuneq1d 4921 . . . . . 6 (𝑥 = (𝑗 + 1) → 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘))
1716fveq2d 6710 . . . . 5 (𝑥 = (𝑗 + 1) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)))
1815sumeq1d 15248 . . . . . 6 (𝑥 = (𝑗 + 1) → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1918oveq2d 7218 . . . . 5 (𝑥 = (𝑗 + 1) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2017, 19breq12d 5056 . . . 4 (𝑥 = (𝑗 + 1) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2120imbi2d 344 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
22 oveq2 7210 . . . . . . 7 (𝑥 = 𝑁 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑁))
2322iuneq1d 4921 . . . . . 6 (𝑥 = 𝑁 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
2423fveq2d 6710 . . . . 5 (𝑥 = 𝑁 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
2522sumeq1d 15248 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2625oveq2d 7218 . . . . 5 (𝑥 = 𝑁 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2724, 26breq12d 5056 . . . 4 (𝑥 = 𝑁 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2827imbi2d 344 . . 3 (𝑥 = 𝑁 → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
29 0le0 11914 . . . . 5 0 ≤ 0
30 prmrec.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3130nncnd 11829 . . . . . 6 (𝜑𝑁 ∈ ℂ)
3231mul01d 11014 . . . . 5 (𝜑 → (𝑁 · 0) = 0)
3329, 32breqtrrid 5081 . . . 4 (𝜑 → 0 ≤ (𝑁 · 0))
34 prmrec.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
3534nnred 11828 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
3635ltp1d 11745 . . . . . . . . 9 (𝜑𝐾 < (𝐾 + 1))
3734nnzd 12264 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
3837peano2zd 12268 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℤ)
39 fzn 13111 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4038, 37, 39syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4136, 40mpbid 235 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝐾) = ∅)
4241iuneq1d 4921 . . . . . . 7 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
43 0iun 4961 . . . . . . 7 𝑘 ∈ ∅ (𝑊𝑘) = ∅
4442, 43eqtrdi 2790 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = ∅)
4544fveq2d 6710 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = (♯‘∅))
46 hash0 13917 . . . . 5 (♯‘∅) = 0
4745, 46eqtrdi 2790 . . . 4 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = 0)
4841sumeq1d 15248 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
49 sum0 15268 . . . . . 6 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
5048, 49eqtrdi 2790 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
5150oveq2d 7218 . . . 4 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
5233, 47, 513brtr4d 5075 . . 3 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
53 fzfi 13528 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
54 elfzuz 13091 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑗) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
5534peano2nnd 11830 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 + 1) ∈ ℕ)
56 eluznn 12497 . . . . . . . . . . . . . . . . 17 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
5755, 56sylan 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
58 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
59 breq1 5046 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
6058, 59anbi12d 634 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
6160rabbidv 3383 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
62 prmrec.7 . . . . . . . . . . . . . . . . . . 19 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
63 ovex 7235 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ∈ V
6463rabex 5214 . . . . . . . . . . . . . . . . . . 19 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
6561, 62, 64fvmpt 6807 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
6665adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
67 ssrab2 3983 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
6866, 67eqsstrdi 3945 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
6957, 68syldan 594 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
7054, 69sylan2 596 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑗)) → (𝑊𝑘) ⊆ (1...𝑁))
7170ralrimiva 3098 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7271adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
73 iunss 4944 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7472, 73sylibr 237 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
75 ssfi 8840 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
7653, 74, 75sylancr 590 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
77 hashcl 13906 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7876, 77syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7978nn0red 12134 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℝ)
8030nnred 11828 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8180adantr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℝ)
82 fzfid 13529 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...𝑗) ∈ Fin)
8355adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℕ)
8483, 54, 56syl2an 599 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → 𝑘 ∈ ℕ)
85 nnrecre 11855 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
86 0re 10818 . . . . . . . . . . . 12 0 ∈ ℝ
87 ifcl 4474 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8885, 86, 87sylancl 589 . . . . . . . . . . 11 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8984, 88syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9082, 89fsumrecl 15281 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9181, 90remulcld 10846 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
92 prmnn 16212 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℙ → (𝑗 + 1) ∈ ℕ)
9392nnrecred 11864 . . . . . . . . . . 11 ((𝑗 + 1) ∈ ℙ → (1 / (𝑗 + 1)) ∈ ℝ)
9493adantl 485 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (1 / (𝑗 + 1)) ∈ ℝ)
95 0red 10819 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ∈ ℝ)
9694, 95ifclda 4464 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℝ)
9781, 96remulcld 10846 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) ∈ ℝ)
9879, 91, 97leadd1d 11409 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
99 eluzp1p1 12449 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝐾) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
10099adantl 485 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
101 simpl 486 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝜑)
102 elfzuz 13091 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
10388recnd 10844 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
10457, 103syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
105101, 102, 104syl2an 599 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
106 eleq1 2821 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
107 oveq2 7210 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (1 / 𝑘) = (1 / (𝑗 + 1)))
108106, 107ifbieq1d 4453 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))
109100, 105, 108fsumm1 15296 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
110 eluzelz 12431 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ ℤ)
111110adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℤ)
112111zcnd 12266 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℂ)
113 ax-1cn 10770 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 pncan 11067 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
115112, 113, 114sylancl 589 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗 + 1) − 1) = 𝑗)
116115oveq2d 7218 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...((𝑗 + 1) − 1)) = ((𝐾 + 1)...𝑗))
117116sumeq1d 15248 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
118117oveq1d 7217 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
119109, 118eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
120119oveq2d 7218 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
12131adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℂ)
12290recnd 10844 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
12396recnd 10844 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℂ)
124121, 122, 123adddid 10840 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
125120, 124eqtrd 2774 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
126125breq2d 5055 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
12798, 126bitr4d 285 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
128102, 69sylan2 596 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
129128ralrimiva 3098 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
130129adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
131 iunss 4944 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
132130, 131sylibr 237 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
133 ssfi 8840 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
13453, 132, 133sylancr 590 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
135 hashcl 13906 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
136134, 135syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
137136nn0red 12134 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ)
138 fveq2 6706 . . . . . . . . . . . . . 14 (𝑘 = (𝑗 + 1) → (𝑊𝑘) = (𝑊‘(𝑗 + 1)))
139138sseq1d 3922 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → ((𝑊𝑘) ⊆ (1...𝑁) ↔ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)))
14068ralrimiva 3098 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
141140adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
142 eluznn 12497 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
14334, 142sylan 583 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
144143peano2nnd 11830 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℕ)
145139, 141, 144rspcdva 3532 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁))
146 ssfi 8840 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
14753, 145, 146sylancr 590 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
148 hashcl 13906 . . . . . . . . . . 11 ((𝑊‘(𝑗 + 1)) ∈ Fin → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
149147, 148syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
150149nn0red 12134 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℝ)
15179, 150readdcld 10845 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ∈ ℝ)
15279, 97readdcld 10845 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ)
15338adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
154 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
15534nncnd 11829 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
156155adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
157 pncan 11067 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
158156, 113, 157sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1) − 1) = 𝐾)
159158fveq2d 6710 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) − 1)) = (ℤ𝐾))
160154, 159eleqtrrd 2837 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1)))
161 fzsuc2 13153 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℤ ∧ 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1))) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
162153, 160, 161syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
163162iuneq1d 4921 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘))
164 iunxun 4992 . . . . . . . . . . . 12 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘))
165 ovex 7235 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
166165, 138iunxsn 4989 . . . . . . . . . . . . 13 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘) = (𝑊‘(𝑗 + 1))
167166uneq2i 4064 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘)) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
168164, 167eqtri 2762 . . . . . . . . . . 11 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
169163, 168eqtrdi 2790 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1))))
170169fveq2d 6710 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) = (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))))
171 hashun2 13933 . . . . . . . . . 10 (( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ∈ Fin) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17276, 147, 171syl2anc 587 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
173170, 172eqbrtrd 5065 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))))
17481, 144nndivred 11867 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) ∈ ℝ)
175 flle 13357 . . . . . . . . . . . . . 14 ((𝑁 / (𝑗 + 1)) ∈ ℝ → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
176174, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
177 elfznn 13124 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
178177nncnd 11829 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
179178subid1d 11161 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → (𝑛 − 0) = 𝑛)
180179breq2d 5055 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → ((𝑗 + 1) ∥ (𝑛 − 0) ↔ (𝑗 + 1) ∥ 𝑛))
181180rabbiia 3375 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)} = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}
182181fveq2i 6709 . . . . . . . . . . . . . 14 (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
183 1zzd 12191 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 1 ∈ ℤ)
18430nnnn0d 12133 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
185 nn0uz 12459 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
186 1m1e0 11885 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
187186fveq2i 6709 . . . . . . . . . . . . . . . . . . 19 (ℤ‘(1 − 1)) = (ℤ‘0)
188185, 187eqtr4i 2765 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘(1 − 1))
189184, 188eleqtrdi 2844 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(1 − 1)))
190189adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ‘(1 − 1)))
191 0zd 12171 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 0 ∈ ℤ)
192144, 183, 190, 191hashdvds 16309 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))))
193121subid1d 11161 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 − 0) = 𝑁)
194193fvoveq1d 7224 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘((𝑁 − 0) / (𝑗 + 1))) = (⌊‘(𝑁 / (𝑗 + 1))))
195186oveq1i 7212 . . . . . . . . . . . . . . . . . . . . 21 ((1 − 1) − 0) = (0 − 0)
196 0m0e0 11933 . . . . . . . . . . . . . . . . . . . . 21 (0 − 0) = 0
197195, 196eqtri 2762 . . . . . . . . . . . . . . . . . . . 20 ((1 − 1) − 0) = 0
198197oveq1i 7212 . . . . . . . . . . . . . . . . . . 19 (((1 − 1) − 0) / (𝑗 + 1)) = (0 / (𝑗 + 1))
199144nncnd 11829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℂ)
200144nnne0d 11863 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ≠ 0)
201199, 200div0d 11590 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (ℤ𝐾)) → (0 / (𝑗 + 1)) = 0)
202198, 201syl5eq 2786 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((1 − 1) − 0) / (𝑗 + 1)) = 0)
203202fveq2d 6710 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = (⌊‘0))
204 0z 12170 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
205 flid 13366 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (⌊‘0) = 0)
206204, 205ax-mp 5 . . . . . . . . . . . . . . . . 17 (⌊‘0) = 0
207203, 206eqtrdi 2790 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = 0)
208194, 207oveq12d 7220 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))) = ((⌊‘(𝑁 / (𝑗 + 1))) − 0))
209174flcld 13356 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℤ)
210209zcnd 12266 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℂ)
211210subid1d 11161 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘(𝑁 / (𝑗 + 1))) − 0) = (⌊‘(𝑁 / (𝑗 + 1))))
212192, 208, 2113eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (⌊‘(𝑁 / (𝑗 + 1))))
213182, 212eqtr3id 2788 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) = (⌊‘(𝑁 / (𝑗 + 1))))
214121, 199, 200divrecd 11594 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) = (𝑁 · (1 / (𝑗 + 1))))
215214eqcomd 2740 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (1 / (𝑗 + 1))) = (𝑁 / (𝑗 + 1)))
216176, 213, 2153brtr4d 5075 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
217216adantr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
218 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
219 breq1 5046 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝𝑛 ↔ (𝑗 + 1) ∥ 𝑛))
220218, 219anbi12d 634 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑗 + 1) → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
221220rabbidv 3383 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑗 + 1) → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
22263rabex 5214 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} ∈ V
223221, 62, 222fvmpt 6807 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ ℕ → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
224144, 223syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
225224adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
226 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑗 + 1) ∈ ℙ)
227226biantrurd 536 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → ((𝑗 + 1) ∥ 𝑛 ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
228227rabbidv 3383 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
229225, 228eqtr4d 2777 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
230229fveq2d 6710 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}))
231 iftrue 4435 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
232231adantl 485 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
233232oveq2d 7218 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · (1 / (𝑗 + 1))))
234217, 230, 2333brtr4d 5075 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
23529a1i 11 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ≤ 0)
236 simpl 486 . . . . . . . . . . . . . . . . 17 (((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛) → (𝑗 + 1) ∈ ℙ)
237236con3i 157 . . . . . . . . . . . . . . . 16 (¬ (𝑗 + 1) ∈ ℙ → ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
238237ralrimivw 3099 . . . . . . . . . . . . . . 15 (¬ (𝑗 + 1) ∈ ℙ → ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
239 rabeq0 4289 . . . . . . . . . . . . . . 15 ({𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅ ↔ ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
240238, 239sylibr 237 . . . . . . . . . . . . . 14 (¬ (𝑗 + 1) ∈ ℙ → {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅)
241224, 240sylan9eq 2794 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = ∅)
242241fveq2d 6710 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = (♯‘∅))
243242, 46eqtrdi 2790 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) = 0)
244 iffalse 4438 . . . . . . . . . . . . 13 (¬ (𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = 0)
245244oveq2d 7218 . . . . . . . . . . . 12 (¬ (𝑗 + 1) ∈ ℙ → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · 0))
24632adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · 0) = 0)
247245, 246sylan9eqr 2796 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = 0)
248235, 243, 2473brtr4d 5075 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
249234, 248pm2.61dan 813 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
250150, 97, 79, 249leadd2dd 11430 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
251137, 151, 152, 173, 250letrd 10972 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
252 fzfid 13529 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) ∈ Fin)
25357, 88syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
254101, 102, 253syl2an 599 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
255252, 254fsumrecl 15281 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
25681, 255remulcld 10846 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
257 letr 10909 . . . . . . . 8 (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ ∧ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
258137, 152, 256, 257syl3anc 1373 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
259251, 258mpand 695 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
260127, 259sylbid 243 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
261260expcom 417 . . . 4 (𝑗 ∈ (ℤ𝐾) → (𝜑 → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
262261a2d 29 . . 3 (𝑗 ∈ (ℤ𝐾) → ((𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
2637, 14, 21, 28, 52, 262uzind4i 12489 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
264263com12 32 1 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  {crab 3058  cdif 3854  cun 3855  wss 3857  c0 4227  ifcif 4429  {csn 4531   ciun 4894   class class class wbr 5043  cmpt 5124  dom cdm 5540  cfv 6369  (class class class)co 7202  Fincfn 8615  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  ...cfz 13078  cfl 13348  seqcseq 13557  chash 13879  cli 15028  Σcsu 15232  cdvds 15796  cprime 16209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-dvds 15797  df-prm 16210
This theorem is referenced by:  prmreclem5  16454
  Copyright terms: Public domain W3C validator