| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝐾)) |
| 2 | 1 | iuneq1d 5000 |
. . . . . 6
⊢ (𝑥 = 𝐾 → ∪
𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘) = ∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) |
| 3 | 2 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = 𝐾 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) = (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘))) |
| 4 | 1 | sumeq1d 15721 |
. . . . . 6
⊢ (𝑥 = 𝐾 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 5 | 4 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = 𝐾 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 6 | 3, 5 | breq12d 5137 |
. . . 4
⊢ (𝑥 = 𝐾 → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 7 | 6 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐾 → ((𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 8 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑗 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑗)) |
| 9 | 8 | iuneq1d 5000 |
. . . . . 6
⊢ (𝑥 = 𝑗 → ∪
𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘) = ∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) |
| 10 | 9 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = 𝑗 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) = (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘))) |
| 11 | 8 | sumeq1d 15721 |
. . . . . 6
⊢ (𝑥 = 𝑗 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 12 | 11 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = 𝑗 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 13 | 10, 12 | breq12d 5137 |
. . . 4
⊢ (𝑥 = 𝑗 → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 14 | 13 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑗 → ((𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 15 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = (𝑗 + 1) → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...(𝑗 + 1))) |
| 16 | 15 | iuneq1d 5000 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘) = ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) |
| 17 | 16 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) = (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘))) |
| 18 | 15 | sumeq1d 15721 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 19 | 18 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 20 | 17, 19 | breq12d 5137 |
. . . 4
⊢ (𝑥 = (𝑗 + 1) → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 21 | 20 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑗 + 1) → ((𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 22 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑁)) |
| 23 | 22 | iuneq1d 5000 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ∪
𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘) = ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
| 24 | 23 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 = 𝑁 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) = (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
| 25 | 22 | sumeq1d 15721 |
. . . . . 6
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 26 | 25 | oveq2d 7426 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 27 | 24, 26 | breq12d 5137 |
. . . 4
⊢ (𝑥 = 𝑁 → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 28 | 27 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 29 | | 0le0 12346 |
. . . . 5
⊢ 0 ≤
0 |
| 30 | | prmrec.3 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 31 | 30 | nncnd 12261 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 32 | 31 | mul01d 11439 |
. . . . 5
⊢ (𝜑 → (𝑁 · 0) = 0) |
| 33 | 29, 32 | breqtrrid 5162 |
. . . 4
⊢ (𝜑 → 0 ≤ (𝑁 · 0)) |
| 34 | | prmrec.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 35 | 34 | nnred 12260 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 36 | 35 | ltp1d 12177 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 < (𝐾 + 1)) |
| 37 | 34 | nnzd 12620 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 38 | 37 | peano2zd 12705 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
| 39 | | fzn 13562 |
. . . . . . . . . 10
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅)) |
| 40 | 38, 37, 39 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅)) |
| 41 | 36, 40 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝐾 + 1)...𝐾) = ∅) |
| 42 | 41 | iuneq1d 5000 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘) = ∪ 𝑘 ∈ ∅ (𝑊‘𝑘)) |
| 43 | | 0iun 5044 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ ∅ (𝑊‘𝑘) = ∅ |
| 44 | 42, 43 | eqtrdi 2787 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘) = ∅) |
| 45 | 44 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) =
(♯‘∅)) |
| 46 | | hash0 14390 |
. . . . 5
⊢
(♯‘∅) = 0 |
| 47 | 45, 46 | eqtrdi 2787 |
. . . 4
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) = 0) |
| 48 | 41 | sumeq1d 15721 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 49 | | sum0 15742 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ if(𝑘 ∈
ℙ, (1 / 𝑘), 0) =
0 |
| 50 | 48, 49 | eqtrdi 2787 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0) |
| 51 | 50 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0)) |
| 52 | 33, 47, 51 | 3brtr4d 5156 |
. . 3
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
| 53 | | fzfi 13995 |
. . . . . . . . . . 11
⊢
(1...𝑁) ∈
Fin |
| 54 | | elfzuz 13542 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ((𝐾 + 1)...𝑗) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) |
| 55 | 34 | peano2nnd 12262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
| 56 | | eluznn 12939 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ) |
| 57 | 55, 56 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈
ℕ) |
| 58 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
| 59 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛)) |
| 60 | 58, 59 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛))) |
| 61 | 60 | rabbidv 3428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 62 | | prmrec.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) |
| 63 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑁) ∈
V |
| 64 | 63 | rabex 5314 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ∈ V |
| 65 | 61, 62, 64 | fvmpt 6991 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 66 | 65 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
| 67 | | ssrab2 4060 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ⊆ (1...𝑁) |
| 68 | 66, 67 | eqsstrdi 4008 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 69 | 57, 68 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 70 | 54, 69 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 71 | 70 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 73 | | iunss 5026 |
. . . . . . . . . . . 12
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 74 | 72, 73 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 75 | | ssfi 9192 |
. . . . . . . . . . 11
⊢
(((1...𝑁) ∈ Fin
∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ⊆ (1...𝑁)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∈ Fin) |
| 76 | 53, 74, 75 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∈ Fin) |
| 77 | | hashcl 14379 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∈ Fin → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ∈
ℕ0) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ∈
ℕ0) |
| 79 | 78 | nn0red 12568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ∈ ℝ) |
| 80 | 30 | nnred 12260 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 81 | 80 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℝ) |
| 82 | | fzfid 13996 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝐾 + 1)...𝑗) ∈ Fin) |
| 83 | 55 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℕ) |
| 84 | 83, 54, 56 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → 𝑘 ∈ ℕ) |
| 85 | | nnrecre 12287 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
| 86 | | 0re 11242 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 87 | | ifcl 4551 |
. . . . . . . . . . . 12
⊢ (((1 /
𝑘) ∈ ℝ ∧ 0
∈ ℝ) → if(𝑘
∈ ℙ, (1 / 𝑘), 0)
∈ ℝ) |
| 88 | 85, 86, 87 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
| 89 | 84, 88 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 90 | 82, 89 | fsumrecl 15755 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 91 | 81, 90 | remulcld 11270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) |
| 92 | | prmnn 16698 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈ ℙ →
(𝑗 + 1) ∈
ℕ) |
| 93 | 92 | nnrecred 12296 |
. . . . . . . . . . 11
⊢ ((𝑗 + 1) ∈ ℙ → (1 /
(𝑗 + 1)) ∈
ℝ) |
| 94 | 93 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (1 / (𝑗 + 1)) ∈
ℝ) |
| 95 | | 0red 11243 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0
∈ ℝ) |
| 96 | 94, 95 | ifclda 4541 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈
ℝ) |
| 97 | 81, 96 | remulcld 11270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) ∈
ℝ) |
| 98 | 79, 91, 97 | leadd1d 11836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))) |
| 99 | | eluzp1p1 12885 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝐾) → (𝑗 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 101 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝜑) |
| 102 | | elfzuz 13542 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) |
| 103 | 88 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ) |
| 104 | 57, 103 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ) |
| 105 | 101, 102,
104 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) |
| 106 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ)) |
| 107 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑗 + 1) → (1 / 𝑘) = (1 / (𝑗 + 1))) |
| 108 | 106, 107 | ifbieq1d 4530 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑗 + 1) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) |
| 109 | 100, 105,
108 | fsumm1 15772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 110 | | eluzelz 12867 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝐾) → 𝑗 ∈ ℤ) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ ℤ) |
| 112 | 111 | zcnd 12703 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ ℂ) |
| 113 | | ax-1cn 11192 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 114 | | pncan 11493 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 1) = 𝑗) |
| 115 | 112, 113,
114 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝑗 + 1) − 1) = 𝑗) |
| 116 | 115 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝐾 + 1)...((𝑗 + 1) − 1)) = ((𝐾 + 1)...𝑗)) |
| 117 | 116 | sumeq1d 15721 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
| 118 | 117 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 119 | 109, 118 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 120 | 119 | oveq2d 7426 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))) |
| 121 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℂ) |
| 122 | 90 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ) |
| 123 | 96 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈
ℂ) |
| 124 | 121, 122,
123 | adddid 11264 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))) |
| 125 | 120, 124 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))) |
| 126 | 125 | breq2d 5136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))) |
| 127 | 98, 126 | bitr4d 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 128 | 102, 69 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 129 | 128 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 130 | 129 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 131 | | iunss 5026 |
. . . . . . . . . . . 12
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 132 | 130, 131 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁)) |
| 133 | | ssfi 9192 |
. . . . . . . . . . 11
⊢
(((1...𝑁) ∈ Fin
∧ ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ⊆ (1...𝑁)) → ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ∈ Fin) |
| 134 | 53, 132, 133 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ∈ Fin) |
| 135 | | hashcl 14379 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) ∈ Fin → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ∈
ℕ0) |
| 136 | 134, 135 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ∈
ℕ0) |
| 137 | 136 | nn0red 12568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ∈ ℝ) |
| 138 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑗 + 1) → (𝑊‘𝑘) = (𝑊‘(𝑗 + 1))) |
| 139 | 138 | sseq1d 3995 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑗 + 1) → ((𝑊‘𝑘) ⊆ (1...𝑁) ↔ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁))) |
| 140 | 68 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 141 | 140 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∀𝑘 ∈ ℕ (𝑊‘𝑘) ⊆ (1...𝑁)) |
| 142 | | eluznn 12939 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝐾)) → 𝑗 ∈ ℕ) |
| 143 | 34, 142 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ ℕ) |
| 144 | 143 | peano2nnd 12262 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 + 1) ∈ ℕ) |
| 145 | 139, 141,
144 | rspcdva 3607 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) |
| 146 | | ssfi 9192 |
. . . . . . . . . . . 12
⊢
(((1...𝑁) ∈ Fin
∧ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) → (𝑊‘(𝑗 + 1)) ∈ Fin) |
| 147 | 53, 145, 146 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑊‘(𝑗 + 1)) ∈ Fin) |
| 148 | | hashcl 14379 |
. . . . . . . . . . 11
⊢ ((𝑊‘(𝑗 + 1)) ∈ Fin →
(♯‘(𝑊‘(𝑗 + 1))) ∈
ℕ0) |
| 149 | 147, 148 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈
ℕ0) |
| 150 | 149 | nn0red 12568 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ∈ ℝ) |
| 151 | 79, 150 | readdcld 11269 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ∈ ℝ) |
| 152 | 79, 97 | readdcld 11269 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈
ℝ) |
| 153 | 38 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℤ) |
| 154 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ (ℤ≥‘𝐾)) |
| 155 | 34 | nncnd 12261 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 156 | 155 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℂ) |
| 157 | | pncan 11493 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 + 1)
− 1) = 𝐾) |
| 158 | 156, 113,
157 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝐾 + 1) − 1) = 𝐾) |
| 159 | 158 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘((𝐾 + 1) − 1)) =
(ℤ≥‘𝐾)) |
| 160 | 154, 159 | eleqtrrd 2838 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ (ℤ≥‘((𝐾 + 1) −
1))) |
| 161 | | fzsuc2 13604 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑗 ∈
(ℤ≥‘((𝐾 + 1) − 1))) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})) |
| 162 | 153, 160,
161 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})) |
| 163 | 162 | iuneq1d 5000 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) = ∪ 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊‘𝑘)) |
| 164 | | iunxun 5075 |
. . . . . . . . . . . 12
⊢ ∪ 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊‘𝑘) = (∪
𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ ∪
𝑘 ∈ {(𝑗 + 1)} (𝑊‘𝑘)) |
| 165 | | ovex 7443 |
. . . . . . . . . . . . . 14
⊢ (𝑗 + 1) ∈ V |
| 166 | 165, 138 | iunxsn 5072 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊‘𝑘) = (𝑊‘(𝑗 + 1)) |
| 167 | 166 | uneq2i 4145 |
. . . . . . . . . . . 12
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ ∪
𝑘 ∈ {(𝑗 + 1)} (𝑊‘𝑘)) = (∪
𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1))) |
| 168 | 164, 167 | eqtri 2759 |
. . . . . . . . . . 11
⊢ ∪ 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊‘𝑘) = (∪
𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1))) |
| 169 | 163, 168 | eqtrdi 2787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘) = (∪
𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1)))) |
| 170 | 169 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) = (♯‘(∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1))))) |
| 171 | | hashun2 14406 |
. . . . . . . . . 10
⊢
((∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ∈ Fin) →
(♯‘(∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (♯‘(𝑊‘(𝑗 + 1))))) |
| 172 | 76, 147, 171 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘(∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (♯‘(𝑊‘(𝑗 + 1))))) |
| 173 | 170, 172 | eqbrtrd 5146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (♯‘(𝑊‘(𝑗 + 1))))) |
| 174 | 81, 144 | nndivred 12299 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 / (𝑗 + 1)) ∈ ℝ) |
| 175 | | flle 13821 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 / (𝑗 + 1)) ∈ ℝ →
(⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1))) |
| 176 | 174, 175 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1))) |
| 177 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
| 178 | 177 | nncnd 12261 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ) |
| 179 | 178 | subid1d 11588 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (1...𝑁) → (𝑛 − 0) = 𝑛) |
| 180 | 179 | breq2d 5136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑁) → ((𝑗 + 1) ∥ (𝑛 − 0) ↔ (𝑗 + 1) ∥ 𝑛)) |
| 181 | 180 | rabbiia 3424 |
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)} = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} |
| 182 | 181 | fveq2i 6884 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑛
∈ (1...𝑁) ∣
(𝑗 + 1) ∥ (𝑛 − 0)}) =
(♯‘{𝑛 ∈
(1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) |
| 183 | | 1zzd 12628 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 1 ∈
ℤ) |
| 184 | 30 | nnnn0d 12567 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 185 | | nn0uz 12899 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 = (ℤ≥‘0) |
| 186 | | 1m1e0 12317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 |
| 187 | 186 | fveq2i 6884 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 188 | 185, 187 | eqtr4i 2762 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 189 | 184, 188 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
| 190 | 189 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (ℤ≥‘(1
− 1))) |
| 191 | | 0zd 12605 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 0 ∈
ℤ) |
| 192 | 144, 183,
190, 191 | hashdvds 16799 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = ((⌊‘((𝑁 − 0) / (𝑗 + 1))) −
(⌊‘(((1 − 1) − 0) / (𝑗 + 1))))) |
| 193 | 121 | subid1d 11588 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 − 0) = 𝑁) |
| 194 | 193 | fvoveq1d 7432 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘((𝑁 − 0) / (𝑗 + 1))) = (⌊‘(𝑁 / (𝑗 + 1)))) |
| 195 | 186 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
− 1) − 0) = (0 − 0) |
| 196 | | 0m0e0 12365 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0
− 0) = 0 |
| 197 | 195, 196 | eqtri 2759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
− 1) − 0) = 0 |
| 198 | 197 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((1
− 1) − 0) / (𝑗
+ 1)) = (0 / (𝑗 +
1)) |
| 199 | 144 | nncnd 12261 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 + 1) ∈ ℂ) |
| 200 | 144 | nnne0d 12295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 + 1) ≠ 0) |
| 201 | 199, 200 | div0d 12021 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (0 / (𝑗 + 1)) = 0) |
| 202 | 198, 201 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (((1 − 1)
− 0) / (𝑗 + 1)) =
0) |
| 203 | 202 | fveq2d 6885 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘(((1
− 1) − 0) / (𝑗
+ 1))) = (⌊‘0)) |
| 204 | | 0z 12604 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℤ |
| 205 | | flid 13830 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℤ → (⌊‘0) = 0) |
| 206 | 204, 205 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(⌊‘0) = 0 |
| 207 | 203, 206 | eqtrdi 2787 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘(((1
− 1) − 0) / (𝑗
+ 1))) = 0) |
| 208 | 194, 207 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((⌊‘((𝑁 −
0) / (𝑗 + 1))) −
(⌊‘(((1 − 1) − 0) / (𝑗 + 1)))) = ((⌊‘(𝑁 / (𝑗 + 1))) − 0)) |
| 209 | 174 | flcld 13820 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℤ) |
| 210 | 209 | zcnd 12703 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℂ) |
| 211 | 210 | subid1d 11588 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((⌊‘(𝑁 / (𝑗 + 1))) − 0) = (⌊‘(𝑁 / (𝑗 + 1)))) |
| 212 | 192, 208,
211 | 3eqtrd 2775 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (⌊‘(𝑁 / (𝑗 + 1)))) |
| 213 | 182, 212 | eqtr3id 2785 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) = (⌊‘(𝑁 / (𝑗 + 1)))) |
| 214 | 121, 199,
200 | divrecd 12025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 / (𝑗 + 1)) = (𝑁 · (1 / (𝑗 + 1)))) |
| 215 | 214 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · (1 / (𝑗 + 1))) = (𝑁 / (𝑗 + 1))) |
| 216 | 176, 213,
215 | 3brtr4d 5156 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1)))) |
| 217 | 216 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) →
(♯‘{𝑛 ∈
(1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1)))) |
| 218 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑗 + 1) → (𝑝 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ)) |
| 219 | | breq1 5127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑗 + 1) → (𝑝 ∥ 𝑛 ↔ (𝑗 + 1) ∥ 𝑛)) |
| 220 | 218, 219 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑗 + 1) → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))) |
| 221 | 220 | rabbidv 3428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑗 + 1) → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)}) |
| 222 | 63 | rabex 5314 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} ∈ V |
| 223 | 221, 62, 222 | fvmpt 6991 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 + 1) ∈ ℕ →
(𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)}) |
| 224 | 144, 223 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)}) |
| 225 | 224 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)}) |
| 226 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑗 + 1) ∈
ℙ) |
| 227 | 226 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → ((𝑗 + 1) ∥ 𝑛 ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))) |
| 228 | 227 | rabbidv 3428 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)}) |
| 229 | 225, 228 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) |
| 230 | 229 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) →
(♯‘(𝑊‘(𝑗 + 1))) = (♯‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})) |
| 231 | | iftrue 4511 |
. . . . . . . . . . . . 13
⊢ ((𝑗 + 1) ∈ ℙ →
if((𝑗 + 1) ∈ ℙ,
(1 / (𝑗 + 1)), 0) = (1 /
(𝑗 + 1))) |
| 232 | 231 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → if((𝑗 + 1) ∈ ℙ, (1 /
(𝑗 + 1)), 0) = (1 / (𝑗 + 1))) |
| 233 | 232 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · (1 / (𝑗 + 1)))) |
| 234 | 217, 230,
233 | 3brtr4d 5156 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ (𝑗 + 1) ∈ ℙ) →
(♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 235 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0
≤ 0) |
| 236 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 + 1) ∈ ℙ ∧
(𝑗 + 1) ∥ 𝑛) → (𝑗 + 1) ∈ ℙ) |
| 237 | 236 | con3i 154 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑗 + 1) ∈ ℙ
→ ¬ ((𝑗 + 1)
∈ ℙ ∧ (𝑗 +
1) ∥ 𝑛)) |
| 238 | 237 | ralrimivw 3137 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑗 + 1) ∈ ℙ
→ ∀𝑛 ∈
(1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧
(𝑗 + 1) ∥ 𝑛)) |
| 239 | | rabeq0 4368 |
. . . . . . . . . . . . . . 15
⊢ ({𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅ ↔ ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)) |
| 240 | 238, 239 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑗 + 1) ∈ ℙ
→ {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅) |
| 241 | 224, 240 | sylan9eq 2791 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) →
(𝑊‘(𝑗 + 1)) =
∅) |
| 242 | 241 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) →
(♯‘(𝑊‘(𝑗 + 1))) =
(♯‘∅)) |
| 243 | 242, 46 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) →
(♯‘(𝑊‘(𝑗 + 1))) = 0) |
| 244 | | iffalse 4514 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑗 + 1) ∈ ℙ
→ if((𝑗 + 1) ∈
ℙ, (1 / (𝑗 + 1)), 0)
= 0) |
| 245 | 244 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (¬
(𝑗 + 1) ∈ ℙ
→ (𝑁 ·
if((𝑗 + 1) ∈ ℙ,
(1 / (𝑗 + 1)), 0)) = (𝑁 · 0)) |
| 246 | 32 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · 0) = 0) |
| 247 | 245, 246 | sylan9eqr 2793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) →
(𝑁 · if((𝑗 + 1) ∈ ℙ, (1 /
(𝑗 + 1)), 0)) =
0) |
| 248 | 235, 243,
247 | 3brtr4d 5156 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) →
(♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 249 | 234, 248 | pm2.61dan 812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (♯‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) |
| 250 | 150, 97, 79, 249 | leadd2dd 11857 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (♯‘(𝑊‘(𝑗 + 1)))) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))) |
| 251 | 137, 151,
152, 173, 250 | letrd 11397 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))) |
| 252 | | fzfid 13996 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) ∈ Fin) |
| 253 | 57, 88 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
| 254 | 101, 102,
253 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 255 | 252, 254 | fsumrecl 15755 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
| 256 | 81, 255 | remulcld 11270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) |
| 257 | | letr 11334 |
. . . . . . . 8
⊢
(((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ∈ ℝ ∧
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ
∧ (𝑁 ·
Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) →
(((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 258 | 137, 152,
256, 257 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 259 | 251, 258 | mpand 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 260 | 127, 259 | sylbid 240 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 261 | 260 | expcom 413 |
. . . 4
⊢ (𝑗 ∈
(ℤ≥‘𝐾) → (𝜑 → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 262 | 261 | a2d 29 |
. . 3
⊢ (𝑗 ∈
(ℤ≥‘𝐾) → ((𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))) |
| 263 | 7, 14, 21, 28, 52, 262 | uzind4i 12931 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
| 264 | 263 | com12 32 |
1
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |