Step | Hyp | Ref
| Expression |
1 | | raleq 3333 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ Fin)) |
2 | | iuneq1 4937 |
. . . . . 6
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) |
3 | | 0iun 4988 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
4 | 2, 3 | eqtrdi 2795 |
. . . . 5
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∅) |
5 | 4 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = ∅ → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∅ ∈
Fin)) |
6 | 1, 5 | imbi12d 344 |
. . 3
⊢ (𝑤 = ∅ →
((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅
∈ Fin))) |
7 | | raleq 3333 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
8 | | iuneq1 4937 |
. . . . 5
⊢ (𝑤 = 𝑦 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = 𝑦 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
10 | 7, 9 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝑦 → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin))) |
11 | | raleq 3333 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
12 | | iuneq1 4937 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) |
13 | 12 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
14 | 11, 13 | imbi12d 344 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))) |
15 | | raleq 3333 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
16 | | iuneq1 4937 |
. . . . 5
⊢ (𝑤 = 𝐴 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) |
17 | 16 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = 𝐴 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
18 | 15, 17 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝐴 → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin))) |
19 | | 0fin 8916 |
. . . 4
⊢ ∅
∈ Fin |
20 | 19 | a1i 11 |
. . 3
⊢
(∀𝑥 ∈
∅ 𝐵 ∈ Fin →
∅ ∈ Fin) |
21 | | ssun1 4102 |
. . . . . . 7
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
22 | | ssralv 3983 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin) |
24 | 23 | imim1i 63 |
. . . . 5
⊢
((∀𝑥 ∈
𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
25 | | iunxun 5019 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = (∪
𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) |
26 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐵 |
27 | | nfcsb1v 3853 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
28 | | csbeq1a 3842 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
29 | 26, 27, 28 | cbviun 4962 |
. . . . . . . . . 10
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ∪ 𝑦 ∈ {𝑧}⦋𝑦 / 𝑥⦌𝐵 |
30 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
31 | | csbeq1 3831 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
32 | 30, 31 | iunxsn 5016 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ {𝑧}⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
33 | 29, 32 | eqtri 2766 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
34 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
35 | | vsnid 4595 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ {𝑧} |
36 | 34, 35 | sselii 3914 |
. . . . . . . . . 10
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
37 | | nfcsb1v 3853 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
38 | 37 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 ∈ Fin |
39 | | csbeq1a 3842 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
40 | 39 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin)) |
41 | 38, 40 | rspc 3539 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin)) |
42 | 36, 41 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin) |
43 | 33, 42 | eqeltrid 2843 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) |
44 | | unfi 8917 |
. . . . . . . 8
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∪ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ Fin) |
45 | 43, 44 | sylan2 592 |
. . . . . . 7
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ Fin) |
46 | 25, 45 | eqeltrid 2843 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) |
47 | 46 | expcom 413 |
. . . . 5
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → (∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
48 | 24, 47 | sylcom 30 |
. . . 4
⊢
((∀𝑥 ∈
𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
49 | 48 | a1i 11 |
. . 3
⊢ (𝑦 ∈ Fin →
((∀𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))) |
50 | 6, 10, 14, 18, 20, 49 | findcard2 8909 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
51 | 50 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) |