MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfi Structured version   Visualization version   GIF version

Theorem iunfi 8806
Description: The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 8807. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
iunfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin) → 𝑥𝐴 𝐵 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3405 . . . 4 (𝑤 = ∅ → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ Fin))
2 iuneq1 4927 . . . . . 6 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
3 0iun 4978 . . . . . 6 𝑥 ∈ ∅ 𝐵 = ∅
42, 3syl6eq 2872 . . . . 5 (𝑤 = ∅ → 𝑥𝑤 𝐵 = ∅)
54eleq1d 2897 . . . 4 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ Fin ↔ ∅ ∈ Fin))
61, 5imbi12d 347 . . 3 (𝑤 = ∅ → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin)))
7 raleq 3405 . . . 4 (𝑤 = 𝑦 → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥𝑦 𝐵 ∈ Fin))
8 iuneq1 4927 . . . . 5 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
98eleq1d 2897 . . . 4 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝑦 𝐵 ∈ Fin))
107, 9imbi12d 347 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin)))
11 raleq 3405 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
12 iuneq1 4927 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2897 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
1411, 13imbi12d 347 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)))
15 raleq 3405 . . . 4 (𝑤 = 𝐴 → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥𝐴 𝐵 ∈ Fin))
16 iuneq1 4927 . . . . 5 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
1716eleq1d 2897 . . . 4 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝐴 𝐵 ∈ Fin))
1815, 17imbi12d 347 . . 3 (𝑤 = 𝐴 → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥𝐴 𝐵 ∈ Fin → 𝑥𝐴 𝐵 ∈ Fin)))
19 0fin 8740 . . . 4 ∅ ∈ Fin
2019a1i 11 . . 3 (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin)
21 ssun1 4147 . . . . . . 7 𝑦 ⊆ (𝑦 ∪ {𝑧})
22 ssralv 4032 . . . . . . 7 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥𝑦 𝐵 ∈ Fin))
2321, 22ax-mp 5 . . . . . 6 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥𝑦 𝐵 ∈ Fin)
2423imim1i 63 . . . . 5 ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin))
25 iunxun 5008 . . . . . . 7 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
26 nfcv 2977 . . . . . . . . . . 11 𝑦𝐵
27 nfcsb1v 3906 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵
28 csbeq1a 3896 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
2926, 27, 28cbviun 4953 . . . . . . . . . 10 𝑥 ∈ {𝑧}𝐵 = 𝑦 ∈ {𝑧}𝑦 / 𝑥𝐵
30 vex 3497 . . . . . . . . . . 11 𝑧 ∈ V
31 csbeq1 3885 . . . . . . . . . . 11 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3230, 31iunxsn 5005 . . . . . . . . . 10 𝑦 ∈ {𝑧}𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
3329, 32eqtri 2844 . . . . . . . . 9 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
34 ssun2 4148 . . . . . . . . . . 11 {𝑧} ⊆ (𝑦 ∪ {𝑧})
35 vsnid 4595 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
3634, 35sselii 3963 . . . . . . . . . 10 𝑧 ∈ (𝑦 ∪ {𝑧})
37 nfcsb1v 3906 . . . . . . . . . . . 12 𝑥𝑧 / 𝑥𝐵
3837nfel1 2994 . . . . . . . . . . 11 𝑥𝑧 / 𝑥𝐵 ∈ Fin
39 csbeq1a 3896 . . . . . . . . . . . 12 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4039eleq1d 2897 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ 𝑧 / 𝑥𝐵 ∈ Fin))
4138, 40rspc 3610 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin))
4236, 41ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin)
4333, 42eqeltrid 2917 . . . . . . . 8 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ {𝑧}𝐵 ∈ Fin)
44 unfi 8779 . . . . . . . 8 (( 𝑥𝑦 𝐵 ∈ Fin ∧ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
4543, 44sylan2 594 . . . . . . 7 (( 𝑥𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
4625, 45eqeltrid 2917 . . . . . 6 (( 𝑥𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)
4746expcom 416 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ( 𝑥𝑦 𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
4824, 47sylcom 30 . . . 4 ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
4948a1i 11 . . 3 (𝑦 ∈ Fin → ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)))
506, 10, 14, 18, 20, 49findcard2 8752 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵 ∈ Fin → 𝑥𝐴 𝐵 ∈ Fin))
5150imp 409 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin) → 𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  csb 3882  cun 3933  wss 3935  c0 4290  {csn 4560   ciun 4911  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507
This theorem is referenced by:  unifi  8807  infssuni  8809  ixpfi  8815  ackbij1lem9  9644  ackbij1lem10  9645  fsuppmapnn0fiublem  13352  fsuppmapnn0fiub  13353  fsum2dlem  15119  fsumcom2  15123  fsumiun  15170  hashiun  15171  hash2iun  15172  ackbijnn  15177  fprod2dlem  15328  fprodcom2  15332  ablfaclem3  19203  pmatcoe1fsupp  21303  locfincmp  22128  txcmplem2  22244  alexsubALTlem3  22651  aannenlem1  24911  fsumvma  25783  numedglnl  26923  fsumiunle  30540  fedgmullem1  31020  poimirlem30  34916  fiphp3d  39409  hbt  39723  cnrefiisplem  42103
  Copyright terms: Public domain W3C validator