MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfi Structured version   Visualization version   GIF version

Theorem iunfi 9037
Description: The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 9038. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
iunfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin) → 𝑥𝐴 𝐵 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3333 . . . 4 (𝑤 = ∅ → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ Fin))
2 iuneq1 4937 . . . . . 6 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
3 0iun 4988 . . . . . 6 𝑥 ∈ ∅ 𝐵 = ∅
42, 3eqtrdi 2795 . . . . 5 (𝑤 = ∅ → 𝑥𝑤 𝐵 = ∅)
54eleq1d 2823 . . . 4 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ Fin ↔ ∅ ∈ Fin))
61, 5imbi12d 344 . . 3 (𝑤 = ∅ → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin)))
7 raleq 3333 . . . 4 (𝑤 = 𝑦 → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥𝑦 𝐵 ∈ Fin))
8 iuneq1 4937 . . . . 5 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
98eleq1d 2823 . . . 4 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝑦 𝐵 ∈ Fin))
107, 9imbi12d 344 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin)))
11 raleq 3333 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
12 iuneq1 4937 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2823 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
1411, 13imbi12d 344 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)))
15 raleq 3333 . . . 4 (𝑤 = 𝐴 → (∀𝑥𝑤 𝐵 ∈ Fin ↔ ∀𝑥𝐴 𝐵 ∈ Fin))
16 iuneq1 4937 . . . . 5 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
1716eleq1d 2823 . . . 4 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝐴 𝐵 ∈ Fin))
1815, 17imbi12d 344 . . 3 (𝑤 = 𝐴 → ((∀𝑥𝑤 𝐵 ∈ Fin → 𝑥𝑤 𝐵 ∈ Fin) ↔ (∀𝑥𝐴 𝐵 ∈ Fin → 𝑥𝐴 𝐵 ∈ Fin)))
19 0fin 8916 . . . 4 ∅ ∈ Fin
2019a1i 11 . . 3 (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin)
21 ssun1 4102 . . . . . . 7 𝑦 ⊆ (𝑦 ∪ {𝑧})
22 ssralv 3983 . . . . . . 7 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥𝑦 𝐵 ∈ Fin))
2321, 22ax-mp 5 . . . . . 6 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥𝑦 𝐵 ∈ Fin)
2423imim1i 63 . . . . 5 ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin))
25 iunxun 5019 . . . . . . 7 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
26 nfcv 2906 . . . . . . . . . . 11 𝑦𝐵
27 nfcsb1v 3853 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵
28 csbeq1a 3842 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
2926, 27, 28cbviun 4962 . . . . . . . . . 10 𝑥 ∈ {𝑧}𝐵 = 𝑦 ∈ {𝑧}𝑦 / 𝑥𝐵
30 vex 3426 . . . . . . . . . . 11 𝑧 ∈ V
31 csbeq1 3831 . . . . . . . . . . 11 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3230, 31iunxsn 5016 . . . . . . . . . 10 𝑦 ∈ {𝑧}𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵
3329, 32eqtri 2766 . . . . . . . . 9 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
34 ssun2 4103 . . . . . . . . . . 11 {𝑧} ⊆ (𝑦 ∪ {𝑧})
35 vsnid 4595 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
3634, 35sselii 3914 . . . . . . . . . 10 𝑧 ∈ (𝑦 ∪ {𝑧})
37 nfcsb1v 3853 . . . . . . . . . . . 12 𝑥𝑧 / 𝑥𝐵
3837nfel1 2922 . . . . . . . . . . 11 𝑥𝑧 / 𝑥𝐵 ∈ Fin
39 csbeq1a 3842 . . . . . . . . . . . 12 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4039eleq1d 2823 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ 𝑧 / 𝑥𝐵 ∈ Fin))
4138, 40rspc 3539 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin))
4236, 41ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin)
4333, 42eqeltrid 2843 . . . . . . . 8 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ {𝑧}𝐵 ∈ Fin)
44 unfi 8917 . . . . . . . 8 (( 𝑥𝑦 𝐵 ∈ Fin ∧ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
4543, 44sylan2 592 . . . . . . 7 (( 𝑥𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
4625, 45eqeltrid 2843 . . . . . 6 (( 𝑥𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)
4746expcom 413 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ( 𝑥𝑦 𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
4824, 47sylcom 30 . . . 4 ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
4948a1i 11 . . 3 (𝑦 ∈ Fin → ((∀𝑥𝑦 𝐵 ∈ Fin → 𝑥𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)))
506, 10, 14, 18, 20, 49findcard2 8909 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵 ∈ Fin → 𝑥𝐴 𝐵 ∈ Fin))
5150imp 406 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin) → 𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  csb 3828  cun 3881  wss 3883  c0 4253  {csn 4558   ciun 4921  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-en 8692  df-fin 8695
This theorem is referenced by:  unifi  9038  infssuni  9040  ixpfi  9046  ackbij1lem9  9915  ackbij1lem10  9916  fsuppmapnn0fiublem  13638  fsuppmapnn0fiub  13639  fsum2dlem  15410  fsumcom2  15414  fsumiun  15461  hashiun  15462  hash2iun  15463  ackbijnn  15468  fprod2dlem  15618  fprodcom2  15622  ablfaclem3  19605  pmatcoe1fsupp  21758  locfincmp  22585  txcmplem2  22701  alexsubALTlem3  23108  aannenlem1  25393  fsumvma  26266  numedglnl  27417  fsumiunle  31045  fedgmullem1  31612  poimirlem30  35734  fiphp3d  40557  hbt  40871  cnrefiisplem  43260
  Copyright terms: Public domain W3C validator