| Step | Hyp | Ref
| Expression |
| 1 | | raleq 3306 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ Fin)) |
| 2 | | iuneq1 4989 |
. . . . . 6
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) |
| 3 | | 0iun 5044 |
. . . . . 6
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
| 4 | 2, 3 | eqtrdi 2787 |
. . . . 5
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∅) |
| 5 | 4 | eleq1d 2820 |
. . . 4
⊢ (𝑤 = ∅ → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∅ ∈
Fin)) |
| 6 | 1, 5 | imbi12d 344 |
. . 3
⊢ (𝑤 = ∅ →
((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅
∈ Fin))) |
| 7 | | raleq 3306 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
| 8 | | iuneq1 4989 |
. . . . 5
⊢ (𝑤 = 𝑦 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵) |
| 9 | 8 | eleq1d 2820 |
. . . 4
⊢ (𝑤 = 𝑦 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
| 10 | 7, 9 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝑦 → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin))) |
| 11 | | raleq 3306 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
| 12 | | iuneq1 4989 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 13 | 12 | eleq1d 2820 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
| 14 | 11, 13 | imbi12d 344 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))) |
| 15 | | raleq 3306 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
| 16 | | iuneq1 4989 |
. . . . 5
⊢ (𝑤 = 𝐴 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) |
| 17 | 16 | eleq1d 2820 |
. . . 4
⊢ (𝑤 = 𝐴 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
| 18 | 15, 17 | imbi12d 344 |
. . 3
⊢ (𝑤 = 𝐴 → ((∀𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin))) |
| 19 | | 0fi 9061 |
. . . 4
⊢ ∅
∈ Fin |
| 20 | 19 | a1i 11 |
. . 3
⊢
(∀𝑥 ∈
∅ 𝐵 ∈ Fin →
∅ ∈ Fin) |
| 21 | | ssun1 4158 |
. . . . . . 7
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 22 | | ssralv 4032 |
. . . . . . 7
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∀𝑥 ∈ 𝑦 𝐵 ∈ Fin) |
| 24 | 23 | imim1i 63 |
. . . . 5
⊢
((∀𝑥 ∈
𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin)) |
| 25 | | iunxun 5075 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = (∪
𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) |
| 26 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐵 |
| 27 | | nfcsb1v 3903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 28 | | csbeq1a 3893 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 29 | 26, 27, 28 | cbviun 5017 |
. . . . . . . . . 10
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ∪ 𝑦 ∈ {𝑧}⦋𝑦 / 𝑥⦌𝐵 |
| 30 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 31 | | csbeq1 3882 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 32 | 30, 31 | iunxsn 5072 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ {𝑧}⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
| 33 | 29, 32 | eqtri 2759 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
| 34 | | ssun2 4159 |
. . . . . . . . . . 11
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
| 35 | | vsnid 4644 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ {𝑧} |
| 36 | 34, 35 | sselii 3960 |
. . . . . . . . . 10
⊢ 𝑧 ∈ (𝑦 ∪ {𝑧}) |
| 37 | | nfcsb1v 3903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
| 38 | 37 | nfel1 2916 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 ∈ Fin |
| 39 | | csbeq1a 3893 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 40 | 39 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin)) |
| 41 | 38, 40 | rspc 3594 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin)) |
| 42 | 36, 41 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ⦋𝑧 / 𝑥⦌𝐵 ∈ Fin) |
| 43 | 33, 42 | eqeltrid 2839 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) |
| 44 | | unfi 9190 |
. . . . . . . 8
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∪ 𝑥 ∈ {𝑧}𝐵 ∈ Fin) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ Fin) |
| 45 | 43, 44 | sylan2 593 |
. . . . . . 7
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ Fin) |
| 46 | 25, 45 | eqeltrid 2839 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin) |
| 47 | 46 | expcom 413 |
. . . . 5
⊢
(∀𝑥 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ Fin → (∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
| 48 | 24, 47 | sylcom 30 |
. . . 4
⊢
((∀𝑥 ∈
𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)) |
| 49 | 48 | a1i 11 |
. . 3
⊢ (𝑦 ∈ Fin →
((∀𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))) |
| 50 | 6, 10, 14, 18, 20, 49 | findcard2 9183 |
. 2
⊢ (𝐴 ∈ Fin →
(∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin)) |
| 51 | 50 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) |