![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrcl4 | Structured version Visualization version GIF version |
Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
Ref | Expression |
---|---|
dfrcl4 | ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrcl3 38493 | . 2 ⊢ r* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1))) | |
2 | df-pr 4320 | . . . . 5 ⊢ {0, 1} = ({0} ∪ {1}) | |
3 | iuneq1 4669 | . . . . 5 ⊢ ({0, 1} = ({0} ∪ {1}) → ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛) |
5 | iunxun 4740 | . . . 4 ⊢ ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛)) | |
6 | c0ex 10240 | . . . . . 6 ⊢ 0 ∈ V | |
7 | oveq2 6804 | . . . . . 6 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
8 | 6, 7 | iunxsn 4738 | . . . . 5 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
9 | 1ex 10241 | . . . . . 6 ⊢ 1 ∈ V | |
10 | oveq2 6804 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟1)) | |
11 | 9, 10 | iunxsn 4738 | . . . . 5 ⊢ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛) = (𝑟↑𝑟1) |
12 | 8, 11 | uneq12i 3916 | . . . 4 ⊢ (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1)) |
13 | 4, 5, 12 | 3eqtri 2797 | . . 3 ⊢ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1)) |
14 | 13 | mpteq2i 4876 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1))) |
15 | 1, 14 | eqtr4i 2796 | 1 ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 Vcvv 3351 ∪ cun 3721 {csn 4317 {cpr 4319 ∪ ciun 4655 ↦ cmpt 4864 (class class class)co 6796 0cc0 10142 1c1 10143 ↑𝑟crelexp 13968 r*crcl 38490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-seq 13009 df-relexp 13969 df-rcl 38491 |
This theorem is referenced by: brfvrcld 38509 fvrcllb0d 38511 fvrcllb0da 38512 fvrcllb1d 38513 corclrcl 38525 corcltrcl 38557 cotrclrcl 38560 |
Copyright terms: Public domain | W3C validator |