Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrcl4 | Structured version Visualization version GIF version |
Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
Ref | Expression |
---|---|
dfrcl4 | ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrcl3 41236 | . 2 ⊢ r* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1))) | |
2 | df-pr 4569 | . . . . 5 ⊢ {0, 1} = ({0} ∪ {1}) | |
3 | iuneq1 4945 | . . . . 5 ⊢ ({0, 1} = ({0} ∪ {1}) → ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛) |
5 | iunxun 5027 | . . . 4 ⊢ ∪ 𝑛 ∈ ({0} ∪ {1})(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛)) | |
6 | c0ex 10953 | . . . . . 6 ⊢ 0 ∈ V | |
7 | oveq2 7276 | . . . . . 6 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
8 | 6, 7 | iunxsn 5024 | . . . . 5 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
9 | 1ex 10955 | . . . . . 6 ⊢ 1 ∈ V | |
10 | oveq2 7276 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟1)) | |
11 | 9, 10 | iunxsn 5024 | . . . . 5 ⊢ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛) = (𝑟↑𝑟1) |
12 | 8, 11 | uneq12i 4099 | . . . 4 ⊢ (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1)) |
13 | 4, 5, 12 | 3eqtri 2771 | . . 3 ⊢ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1)) |
14 | 13 | mpteq2i 5183 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (𝑟↑𝑟1))) |
15 | 1, 14 | eqtr4i 2770 | 1 ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3430 ∪ cun 3889 {csn 4566 {cpr 4568 ∪ ciun 4929 ↦ cmpt 5161 (class class class)co 7268 0cc0 10855 1c1 10856 ↑𝑟crelexp 14711 r*crcl 41233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-relexp 14712 df-rcl 41234 |
This theorem is referenced by: brfvrcld 41252 fvrcllb0d 41254 fvrcllb0da 41255 fvrcllb1d 41256 corclrcl 41268 corcltrcl 41300 cotrclrcl 41303 |
Copyright terms: Public domain | W3C validator |