Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrcl4 Structured version   Visualization version   GIF version

Theorem dfrcl4 41497
Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.)
Assertion
Ref Expression
dfrcl4 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrcl4
StepHypRef Expression
1 dfrcl3 41496 . 2 r* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
2 df-pr 4568 . . . . 5 {0, 1} = ({0} ∪ {1})
3 iuneq1 4947 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛))
42, 3ax-mp 5 . . . 4 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛)
5 iunxun 5030 . . . 4 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛))
6 c0ex 11019 . . . . . 6 0 ∈ V
7 oveq2 7315 . . . . . 6 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
86, 7iunxsn 5027 . . . . 5 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
9 1ex 11021 . . . . . 6 1 ∈ V
10 oveq2 7315 . . . . . 6 (𝑛 = 1 → (𝑟𝑟𝑛) = (𝑟𝑟1))
119, 10iunxsn 5027 . . . . 5 𝑛 ∈ {1} (𝑟𝑟𝑛) = (𝑟𝑟1)
128, 11uneq12i 4101 . . . 4 ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
134, 5, 123eqtri 2768 . . 3 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
1413mpteq2i 5186 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
151, 14eqtr4i 2767 1 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3437  cun 3890  {csn 4565  {cpr 4567   ciun 4931  cmpt 5164  (class class class)co 7307  0cc0 10921  1c1 10922  𝑟crelexp 14779  r*crcl 41493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-n0 12284  df-z 12370  df-uz 12633  df-seq 13772  df-relexp 14780  df-rcl 41494
This theorem is referenced by:  brfvrcld  41512  fvrcllb0d  41514  fvrcllb0da  41515  fvrcllb1d  41516  corclrcl  41528  corcltrcl  41560  cotrclrcl  41563
  Copyright terms: Public domain W3C validator