| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv2g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbfv2g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv12 6935 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | csbconstg 3900 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝐹 = 𝐹) | |
| 3 | 2 | fveq1d 6889 | . 2 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 4 | 1, 3 | eqtrid 2781 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⦋csb 3881 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-dm 5677 df-iota 6495 df-fv 6550 |
| This theorem is referenced by: csbfv 6937 ixpsnval 8923 swrdspsleq 14686 sumeq2ii 15712 fsumabs 15820 prodeq2ii 15930 fprodabs 15993 ixpsnbasval 21182 coe1fzgsumdlem 22274 evl1gsumdlem 22327 pm2mp 22798 cayhamlem4 22861 iuninc 32520 cdlemk39s 40882 evl1gprodd 42059 minregex 43492 |
| Copyright terms: Public domain | W3C validator |