| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv2g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbfv2g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv12 6908 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | csbconstg 3883 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝐹 = 𝐹) | |
| 3 | 2 | fveq1d 6862 | . 2 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 4 | 1, 3 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3864 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-dm 5650 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: csbfv 6910 ixpsnval 8875 swrdspsleq 14636 sumeq2ii 15665 fsumabs 15773 prodeq2ii 15883 fprodabs 15946 ixpsnbasval 21121 coe1fzgsumdlem 22196 evl1gsumdlem 22249 pm2mp 22718 cayhamlem4 22781 iuninc 32495 cdlemk39s 40928 evl1gprodd 42100 minregex 43516 |
| Copyright terms: Public domain | W3C validator |