![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbfv2g | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbfv2g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfv12 6936 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) | |
2 | csbconstg 3911 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝐹 = 𝐹) | |
3 | 2 | fveq1d 6890 | . 2 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
4 | 1, 3 | eqtrid 2785 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3892 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-dm 5685 df-iota 6492 df-fv 6548 |
This theorem is referenced by: csbfv 6938 ixpsnval 8890 swrdspsleq 14611 sumeq2ii 15635 fsumabs 15743 prodeq2ii 15853 fprodabs 15914 ixpsnbasval 20819 coe1fzgsumdlem 21807 evl1gsumdlem 21857 pm2mp 22309 cayhamlem4 22372 iuninc 31770 cdlemk39s 39748 minregex 42218 |
Copyright terms: Public domain | W3C validator |