MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv2g Structured version   Visualization version   GIF version

Theorem csbfv2g 6909
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12 6908 . 2 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
2 csbconstg 3883 . . 3 (𝐴𝐶𝐴 / 𝑥𝐹 = 𝐹)
32fveq1d 6862 . 2 (𝐴𝐶 → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐹𝐴 / 𝑥𝐵))
41, 3eqtrid 2777 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3864  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-dm 5650  df-iota 6466  df-fv 6521
This theorem is referenced by:  csbfv  6910  ixpsnval  8875  swrdspsleq  14636  sumeq2ii  15665  fsumabs  15773  prodeq2ii  15883  fprodabs  15946  ixpsnbasval  21121  coe1fzgsumdlem  22196  evl1gsumdlem  22249  pm2mp  22718  cayhamlem4  22781  iuninc  32495  cdlemk39s  40928  evl1gprodd  42100  minregex  43516
  Copyright terms: Public domain W3C validator