| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv2g | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbfv2g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfv12 6868 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | csbconstg 3870 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝐹 = 𝐹) | |
| 3 | 2 | fveq1d 6824 | . 2 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 4 | 1, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3851 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: csbfv 6870 ixpsnval 8827 swrdspsleq 14572 sumeq2ii 15600 fsumabs 15708 prodeq2ii 15818 fprodabs 15881 ixpsnbasval 21112 coe1fzgsumdlem 22188 evl1gsumdlem 22241 pm2mp 22710 cayhamlem4 22773 iuninc 32504 cdlemk39s 40928 evl1gprodd 42100 minregex 43517 |
| Copyright terms: Public domain | W3C validator |