MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv2g Structured version   Visualization version   GIF version

Theorem csbfv2g 6868
Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbfv2g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbfv2g
StepHypRef Expression
1 csbfv12 6867 . 2 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
2 csbconstg 3864 . . 3 (𝐴𝐶𝐴 / 𝑥𝐹 = 𝐹)
32fveq1d 6824 . 2 (𝐴𝐶 → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐹𝐴 / 𝑥𝐵))
41, 3eqtrid 2778 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  csb 3845  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489
This theorem is referenced by:  csbfv  6869  ixpsnval  8824  swrdspsleq  14573  sumeq2ii  15600  fsumabs  15708  prodeq2ii  15818  fprodabs  15881  ixpsnbasval  21142  coe1fzgsumdlem  22218  evl1gsumdlem  22271  pm2mp  22740  cayhamlem4  22803  iuninc  32540  cdlemk39s  41037  evl1gprodd  42209  minregex  43626
  Copyright terms: Public domain W3C validator