MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnbasval Structured version   Visualization version   GIF version

Theorem ixpsnbasval 21171
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Distinct variable groups:   𝑅,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 8919 . . 3 (𝑋𝑊X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
21adantl 481 . 2 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))})
3 csbfv2g 6930 . . . . . . . . 9 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))
4 csbfv2g 6930 . . . . . . . . . . 11 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋 / 𝑥𝑥))
5 csbvarg 4414 . . . . . . . . . . . 12 (𝑋𝑊𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6885 . . . . . . . . . . 11 (𝑋𝑊 → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋 / 𝑥𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
74, 6eqtrd 2771 . . . . . . . . . 10 (𝑋𝑊𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥) = (({𝑋} × {(ringLMod‘𝑅)})‘𝑋))
87fveq2d 6885 . . . . . . . . 9 (𝑋𝑊 → (Base‘𝑋 / 𝑥(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
93, 8eqtrd 2771 . . . . . . . 8 (𝑋𝑊𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
109adantl 481 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)))
11 fvexd 6896 . . . . . . . . . . . 12 (𝑅𝑉 → (ringLMod‘𝑅) ∈ V)
1211anim1ci 616 . . . . . . . . . . 11 ((𝑅𝑉𝑋𝑊) → (𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V))
13 xpsng 7134 . . . . . . . . . . 11 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1412, 13syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑋𝑊) → ({𝑋} × {(ringLMod‘𝑅)}) = {⟨𝑋, (ringLMod‘𝑅)⟩})
1514fveq1d 6883 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋))
16 fvsng 7177 . . . . . . . . . 10 ((𝑋𝑊 ∧ (ringLMod‘𝑅) ∈ V) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1712, 16syl 17 . . . . . . . . 9 ((𝑅𝑉𝑋𝑊) → ({⟨𝑋, (ringLMod‘𝑅)⟩}‘𝑋) = (ringLMod‘𝑅))
1815, 17eqtrd 2771 . . . . . . . 8 ((𝑅𝑉𝑋𝑊) → (({𝑋} × {(ringLMod‘𝑅)})‘𝑋) = (ringLMod‘𝑅))
1918fveq2d 6885 . . . . . . 7 ((𝑅𝑉𝑋𝑊) → (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑋)) = (Base‘(ringLMod‘𝑅)))
2010, 19eqtrd 2771 . . . . . 6 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘(ringLMod‘𝑅)))
21 rlmbas 21156 . . . . . 6 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
2220, 21eqtr4di 2789 . . . . 5 ((𝑅𝑉𝑋𝑊) → 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = (Base‘𝑅))
2322eleq2d 2821 . . . 4 ((𝑅𝑉𝑋𝑊) → ((𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) ↔ (𝑓𝑋) ∈ (Base‘𝑅)))
2423anbi2d 630 . . 3 ((𝑅𝑉𝑋𝑊) → ((𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥))) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))))
2524abbidv 2802 . 2 ((𝑅𝑉𝑋𝑊) → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥(Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)))} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
262, 25eqtrd 2771 1 ((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  Vcvv 3464  csb 3879  {csn 4606  cop 4612   × cxp 5657   Fn wfn 6531  cfv 6536  Xcixp 8916  Basecbs 17233  ringLModcrglmod 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-sca 17292  df-vsca 17293  df-ip 17294  df-sra 21136  df-rgmod 21137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator