![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version |
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
4 | nfrab1 3454 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
5 | 3, 4 | nfcxfr 2901 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
6 | 1, 2, 5 | nff 6733 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
7 | hashsn01 14452 | . . . . . . 7 ⊢ ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) | |
8 | 2pos 12367 | . . . . . . . . . 10 ⊢ 0 < 2 | |
9 | 0re 11261 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
10 | 2re 12338 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | ltnlei 11380 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
12 | 8, 11 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
13 | breq2 5152 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0)) | |
14 | 12, 13 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈})) |
15 | 1lt2 12435 | . . . . . . . . . 10 ⊢ 1 < 2 | |
16 | 1re 11259 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
17 | 16, 10 | ltnlei 11380 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
19 | breq2 5152 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1)) | |
20 | 18, 19 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈})) |
21 | 14, 20 | jaoi 857 | . . . . . . 7 ⊢ (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈})) |
22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (♯‘{𝑈}) |
23 | fveq2 6907 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (♯‘(𝐼‘𝑥)) = (♯‘{𝑈})) | |
24 | 23 | breq2d 5160 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼‘𝑥)) ↔ 2 ≤ (♯‘{𝑈}))) |
25 | 22, 24 | mtbiri 327 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼‘𝑥))) |
26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
28 | 26, 27, 3 | lfgredgge2 29156 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑥))) |
29 | 25, 28 | nsyl3 138 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
30 | 29 | ex 412 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
31 | 6, 30 | ralrimi 3255 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
32 | rabeq0 4394 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
33 | 31, 32 | sylibr 234 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∅c0 4339 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 0cc0 11153 1c1 11154 < clt 11293 ≤ cle 11294 2c2 12319 ♯chash 14366 iEdgciedg 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: vtxdlfgrval 29518 |
Copyright terms: Public domain | W3C validator |