![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version |
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
4 | nfrab1 3439 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
5 | 3, 4 | nfcxfr 2890 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
6 | 1, 2, 5 | nff 6724 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
7 | hashsn01 14433 | . . . . . . 7 ⊢ ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) | |
8 | 2pos 12367 | . . . . . . . . . 10 ⊢ 0 < 2 | |
9 | 0re 11266 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
10 | 2re 12338 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | ltnlei 11385 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
12 | 8, 11 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
13 | breq2 5157 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0)) | |
14 | 12, 13 | mtbiri 326 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈})) |
15 | 1lt2 12435 | . . . . . . . . . 10 ⊢ 1 < 2 | |
16 | 1re 11264 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
17 | 16, 10 | ltnlei 11385 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
18 | 15, 17 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
19 | breq2 5157 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1)) | |
20 | 18, 19 | mtbiri 326 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈})) |
21 | 14, 20 | jaoi 855 | . . . . . . 7 ⊢ (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈})) |
22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (♯‘{𝑈}) |
23 | fveq2 6901 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (♯‘(𝐼‘𝑥)) = (♯‘{𝑈})) | |
24 | 23 | breq2d 5165 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼‘𝑥)) ↔ 2 ≤ (♯‘{𝑈}))) |
25 | 22, 24 | mtbiri 326 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼‘𝑥))) |
26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
28 | 26, 27, 3 | lfgredgge2 29060 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑥))) |
29 | 25, 28 | nsyl3 138 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
30 | 29 | ex 411 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
31 | 6, 30 | ralrimi 3245 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
32 | rabeq0 4389 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
33 | 31, 32 | sylibr 233 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 ∅c0 4325 𝒫 cpw 4607 {csn 4633 class class class wbr 5153 dom cdm 5682 ⟶wf 6550 ‘cfv 6554 0cc0 11158 1c1 11159 < clt 11298 ≤ cle 11299 2c2 12319 ♯chash 14347 iEdgciedg 28933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 |
This theorem is referenced by: vtxdlfgrval 29422 |
Copyright terms: Public domain | W3C validator |