| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version | ||
| Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
| lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
| Ref | Expression |
|---|---|
| lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
| 2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 4 | nfrab1 3441 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 5 | 3, 4 | nfcxfr 2897 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
| 6 | 1, 2, 5 | nff 6707 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
| 7 | hashsn01 14439 | . . . . . . 7 ⊢ ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) | |
| 8 | 2pos 12348 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 9 | 0re 11242 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 10 | 2re 12319 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 11 | 9, 10 | ltnlei 11361 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
| 12 | 8, 11 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
| 13 | breq2 5128 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0)) | |
| 14 | 12, 13 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈})) |
| 15 | 1lt2 12416 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 16 | 1re 11240 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 17 | 16, 10 | ltnlei 11361 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
| 18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
| 19 | breq2 5128 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1)) | |
| 20 | 18, 19 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈})) |
| 21 | 14, 20 | jaoi 857 | . . . . . . 7 ⊢ (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈})) |
| 22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (♯‘{𝑈}) |
| 23 | fveq2 6881 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (♯‘(𝐼‘𝑥)) = (♯‘{𝑈})) | |
| 24 | 23 | breq2d 5136 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼‘𝑥)) ↔ 2 ≤ (♯‘{𝑈}))) |
| 25 | 22, 24 | mtbiri 327 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼‘𝑥))) |
| 26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
| 28 | 26, 27, 3 | lfgredgge2 29108 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑥))) |
| 29 | 25, 28 | nsyl3 138 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
| 30 | 29 | ex 412 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
| 31 | 6, 30 | ralrimi 3244 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
| 32 | rabeq0 4368 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
| 33 | 31, 32 | sylibr 234 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 0cc0 11134 1c1 11135 < clt 11274 ≤ cle 11275 2c2 12300 ♯chash 14353 iEdgciedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: vtxdlfgrval 29470 |
| Copyright terms: Public domain | W3C validator |