MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrnloop Structured version   Visualization version   GIF version

Theorem lfgrnloop 29070
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgrnloop (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉   𝑥,𝑈
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrnloop
StepHypRef Expression
1 nfcv 2897 . . . 4 𝑥𝐼
2 nfcv 2897 . . . 4 𝑥𝐴
3 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
4 nfrab1 3440 . . . . 5 𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
53, 4nfcxfr 2895 . . . 4 𝑥𝐸
61, 2, 5nff 6712 . . 3 𝑥 𝐼:𝐴𝐸
7 hashsn01 14437 . . . . . . 7 ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1)
8 2pos 12351 . . . . . . . . . 10 0 < 2
9 0re 11245 . . . . . . . . . . 11 0 ∈ ℝ
10 2re 12322 . . . . . . . . . . 11 2 ∈ ℝ
119, 10ltnlei 11364 . . . . . . . . . 10 (0 < 2 ↔ ¬ 2 ≤ 0)
128, 11mpbi 230 . . . . . . . . 9 ¬ 2 ≤ 0
13 breq2 5127 . . . . . . . . 9 ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0))
1412, 13mtbiri 327 . . . . . . . 8 ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈}))
15 1lt2 12419 . . . . . . . . . 10 1 < 2
16 1re 11243 . . . . . . . . . . 11 1 ∈ ℝ
1716, 10ltnlei 11364 . . . . . . . . . 10 (1 < 2 ↔ ¬ 2 ≤ 1)
1815, 17mpbi 230 . . . . . . . . 9 ¬ 2 ≤ 1
19 breq2 5127 . . . . . . . . 9 ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1))
2018, 19mtbiri 327 . . . . . . . 8 ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈}))
2114, 20jaoi 857 . . . . . . 7 (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈}))
227, 21ax-mp 5 . . . . . 6 ¬ 2 ≤ (♯‘{𝑈})
23 fveq2 6886 . . . . . . 7 ((𝐼𝑥) = {𝑈} → (♯‘(𝐼𝑥)) = (♯‘{𝑈}))
2423breq2d 5135 . . . . . 6 ((𝐼𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼𝑥)) ↔ 2 ≤ (♯‘{𝑈})))
2522, 24mtbiri 327 . . . . 5 ((𝐼𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼𝑥)))
26 lfuhgrnloopv.i . . . . . 6 𝐼 = (iEdg‘𝐺)
27 lfuhgrnloopv.a . . . . . 6 𝐴 = dom 𝐼
2826, 27, 3lfgredgge2 29069 . . . . 5 ((𝐼:𝐴𝐸𝑥𝐴) → 2 ≤ (♯‘(𝐼𝑥)))
2925, 28nsyl3 138 . . . 4 ((𝐼:𝐴𝐸𝑥𝐴) → ¬ (𝐼𝑥) = {𝑈})
3029ex 412 . . 3 (𝐼:𝐴𝐸 → (𝑥𝐴 → ¬ (𝐼𝑥) = {𝑈}))
316, 30ralrimi 3243 . 2 (𝐼:𝐴𝐸 → ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
32 rabeq0 4368 . 2 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
3331, 32sylibr 234 1 (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  {crab 3419  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5123  dom cdm 5665  wf 6537  cfv 6541  0cc0 11137  1c1 11138   < clt 11277  cle 11278  2c2 12303  chash 14351  iEdgciedg 28942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-hash 14352
This theorem is referenced by:  vtxdlfgrval  29431
  Copyright terms: Public domain W3C validator