MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrnloop Structured version   Visualization version   GIF version

Theorem lfgrnloop 27188
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgrnloop (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉   𝑥,𝑈
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrnloop
StepHypRef Expression
1 nfcv 2900 . . . 4 𝑥𝐼
2 nfcv 2900 . . . 4 𝑥𝐴
3 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
4 nfrab1 3289 . . . . 5 𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
53, 4nfcxfr 2898 . . . 4 𝑥𝐸
61, 2, 5nff 6530 . . 3 𝑥 𝐼:𝐴𝐸
7 hashsn01 13966 . . . . . . 7 ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1)
8 2pos 11916 . . . . . . . . . 10 0 < 2
9 0re 10818 . . . . . . . . . . 11 0 ∈ ℝ
10 2re 11887 . . . . . . . . . . 11 2 ∈ ℝ
119, 10ltnlei 10936 . . . . . . . . . 10 (0 < 2 ↔ ¬ 2 ≤ 0)
128, 11mpbi 233 . . . . . . . . 9 ¬ 2 ≤ 0
13 breq2 5047 . . . . . . . . 9 ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0))
1412, 13mtbiri 330 . . . . . . . 8 ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈}))
15 1lt2 11984 . . . . . . . . . 10 1 < 2
16 1re 10816 . . . . . . . . . . 11 1 ∈ ℝ
1716, 10ltnlei 10936 . . . . . . . . . 10 (1 < 2 ↔ ¬ 2 ≤ 1)
1815, 17mpbi 233 . . . . . . . . 9 ¬ 2 ≤ 1
19 breq2 5047 . . . . . . . . 9 ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1))
2018, 19mtbiri 330 . . . . . . . 8 ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈}))
2114, 20jaoi 857 . . . . . . 7 (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈}))
227, 21ax-mp 5 . . . . . 6 ¬ 2 ≤ (♯‘{𝑈})
23 fveq2 6706 . . . . . . 7 ((𝐼𝑥) = {𝑈} → (♯‘(𝐼𝑥)) = (♯‘{𝑈}))
2423breq2d 5055 . . . . . 6 ((𝐼𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼𝑥)) ↔ 2 ≤ (♯‘{𝑈})))
2522, 24mtbiri 330 . . . . 5 ((𝐼𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼𝑥)))
26 lfuhgrnloopv.i . . . . . 6 𝐼 = (iEdg‘𝐺)
27 lfuhgrnloopv.a . . . . . 6 𝐴 = dom 𝐼
2826, 27, 3lfgredgge2 27187 . . . . 5 ((𝐼:𝐴𝐸𝑥𝐴) → 2 ≤ (♯‘(𝐼𝑥)))
2925, 28nsyl3 140 . . . 4 ((𝐼:𝐴𝐸𝑥𝐴) → ¬ (𝐼𝑥) = {𝑈})
3029ex 416 . . 3 (𝐼:𝐴𝐸 → (𝑥𝐴 → ¬ (𝐼𝑥) = {𝑈}))
316, 30ralrimi 3130 . 2 (𝐼:𝐴𝐸 → ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
32 rabeq0 4289 . 2 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
3331, 32sylibr 237 1 (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wral 3054  {crab 3058  c0 4227  𝒫 cpw 4503  {csn 4531   class class class wbr 5043  dom cdm 5540  wf 6365  cfv 6369  0cc0 10712  1c1 10713   < clt 10850  cle 10851  2c2 11868  chash 13879  iEdgciedg 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-hash 13880
This theorem is referenced by:  vtxdlfgrval  27545
  Copyright terms: Public domain W3C validator