MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrnloop Structured version   Visualization version   GIF version

Theorem lfgrnloop 28893
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgrnloop (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉   𝑥,𝑈
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrnloop
StepHypRef Expression
1 nfcv 2897 . . . 4 𝑥𝐼
2 nfcv 2897 . . . 4 𝑥𝐴
3 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
4 nfrab1 3445 . . . . 5 𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
53, 4nfcxfr 2895 . . . 4 𝑥𝐸
61, 2, 5nff 6707 . . 3 𝑥 𝐼:𝐴𝐸
7 hashsn01 14381 . . . . . . 7 ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1)
8 2pos 12319 . . . . . . . . . 10 0 < 2
9 0re 11220 . . . . . . . . . . 11 0 ∈ ℝ
10 2re 12290 . . . . . . . . . . 11 2 ∈ ℝ
119, 10ltnlei 11339 . . . . . . . . . 10 (0 < 2 ↔ ¬ 2 ≤ 0)
128, 11mpbi 229 . . . . . . . . 9 ¬ 2 ≤ 0
13 breq2 5145 . . . . . . . . 9 ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0))
1412, 13mtbiri 327 . . . . . . . 8 ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈}))
15 1lt2 12387 . . . . . . . . . 10 1 < 2
16 1re 11218 . . . . . . . . . . 11 1 ∈ ℝ
1716, 10ltnlei 11339 . . . . . . . . . 10 (1 < 2 ↔ ¬ 2 ≤ 1)
1815, 17mpbi 229 . . . . . . . . 9 ¬ 2 ≤ 1
19 breq2 5145 . . . . . . . . 9 ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1))
2018, 19mtbiri 327 . . . . . . . 8 ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈}))
2114, 20jaoi 854 . . . . . . 7 (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈}))
227, 21ax-mp 5 . . . . . 6 ¬ 2 ≤ (♯‘{𝑈})
23 fveq2 6885 . . . . . . 7 ((𝐼𝑥) = {𝑈} → (♯‘(𝐼𝑥)) = (♯‘{𝑈}))
2423breq2d 5153 . . . . . 6 ((𝐼𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼𝑥)) ↔ 2 ≤ (♯‘{𝑈})))
2522, 24mtbiri 327 . . . . 5 ((𝐼𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼𝑥)))
26 lfuhgrnloopv.i . . . . . 6 𝐼 = (iEdg‘𝐺)
27 lfuhgrnloopv.a . . . . . 6 𝐴 = dom 𝐼
2826, 27, 3lfgredgge2 28892 . . . . 5 ((𝐼:𝐴𝐸𝑥𝐴) → 2 ≤ (♯‘(𝐼𝑥)))
2925, 28nsyl3 138 . . . 4 ((𝐼:𝐴𝐸𝑥𝐴) → ¬ (𝐼𝑥) = {𝑈})
3029ex 412 . . 3 (𝐼:𝐴𝐸 → (𝑥𝐴 → ¬ (𝐼𝑥) = {𝑈}))
316, 30ralrimi 3248 . 2 (𝐼:𝐴𝐸 → ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
32 rabeq0 4379 . 2 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
3331, 32sylibr 233 1 (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wral 3055  {crab 3426  c0 4317  𝒫 cpw 4597  {csn 4623   class class class wbr 5141  dom cdm 5669  wf 6533  cfv 6537  0cc0 11112  1c1 11113   < clt 11252  cle 11253  2c2 12271  chash 14295  iEdgciedg 28765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by:  vtxdlfgrval  29251
  Copyright terms: Public domain W3C validator