Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version |
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
4 | nfrab1 3310 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
5 | 3, 4 | nfcxfr 2904 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
6 | 1, 2, 5 | nff 6580 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
7 | hashsn01 14059 | . . . . . . 7 ⊢ ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) | |
8 | 2pos 12006 | . . . . . . . . . 10 ⊢ 0 < 2 | |
9 | 0re 10908 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
10 | 2re 11977 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | ltnlei 11026 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
12 | 8, 11 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
13 | breq2 5074 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0)) | |
14 | 12, 13 | mtbiri 326 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈})) |
15 | 1lt2 12074 | . . . . . . . . . 10 ⊢ 1 < 2 | |
16 | 1re 10906 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
17 | 16, 10 | ltnlei 11026 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
18 | 15, 17 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
19 | breq2 5074 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1)) | |
20 | 18, 19 | mtbiri 326 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈})) |
21 | 14, 20 | jaoi 853 | . . . . . . 7 ⊢ (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈})) |
22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (♯‘{𝑈}) |
23 | fveq2 6756 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (♯‘(𝐼‘𝑥)) = (♯‘{𝑈})) | |
24 | 23 | breq2d 5082 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼‘𝑥)) ↔ 2 ≤ (♯‘{𝑈}))) |
25 | 22, 24 | mtbiri 326 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼‘𝑥))) |
26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
28 | 26, 27, 3 | lfgredgge2 27397 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑥))) |
29 | 25, 28 | nsyl3 138 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
30 | 29 | ex 412 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
31 | 6, 30 | ralrimi 3139 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
32 | rabeq0 4315 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
33 | 31, 32 | sylibr 233 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 2c2 11958 ♯chash 13972 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: vtxdlfgrval 27755 |
Copyright terms: Public domain | W3C validator |