| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version | ||
| Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
| lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
| Ref | Expression |
|---|---|
| lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 4 | nfrab1 3429 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 5 | 3, 4 | nfcxfr 2890 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
| 6 | 1, 2, 5 | nff 6687 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
| 7 | hashsn01 14388 | . . . . . . 7 ⊢ ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) | |
| 8 | 2pos 12296 | . . . . . . . . . 10 ⊢ 0 < 2 | |
| 9 | 0re 11183 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 10 | 2re 12267 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 11 | 9, 10 | ltnlei 11302 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
| 12 | 8, 11 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
| 13 | breq2 5114 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0)) | |
| 14 | 12, 13 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈})) |
| 15 | 1lt2 12359 | . . . . . . . . . 10 ⊢ 1 < 2 | |
| 16 | 1re 11181 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 17 | 16, 10 | ltnlei 11302 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
| 18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
| 19 | breq2 5114 | . . . . . . . . 9 ⊢ ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1)) | |
| 20 | 18, 19 | mtbiri 327 | . . . . . . . 8 ⊢ ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈})) |
| 21 | 14, 20 | jaoi 857 | . . . . . . 7 ⊢ (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈})) |
| 22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (♯‘{𝑈}) |
| 23 | fveq2 6861 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (♯‘(𝐼‘𝑥)) = (♯‘{𝑈})) | |
| 24 | 23 | breq2d 5122 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼‘𝑥)) ↔ 2 ≤ (♯‘{𝑈}))) |
| 25 | 22, 24 | mtbiri 327 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼‘𝑥))) |
| 26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
| 28 | 26, 27, 3 | lfgredgge2 29058 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑥))) |
| 29 | 25, 28 | nsyl3 138 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
| 30 | 29 | ex 412 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
| 31 | 6, 30 | ralrimi 3236 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
| 32 | rabeq0 4354 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
| 33 | 31, 32 | sylibr 234 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∅c0 4299 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 2c2 12248 ♯chash 14302 iEdgciedg 28931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: vtxdlfgrval 29420 |
| Copyright terms: Public domain | W3C validator |