MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrnloop Structured version   Visualization version   GIF version

Theorem lfgrnloop 26921
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgrnloop (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉   𝑥,𝑈
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrnloop
StepHypRef Expression
1 nfcv 2958 . . . 4 𝑥𝐼
2 nfcv 2958 . . . 4 𝑥𝐴
3 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
4 nfrab1 3340 . . . . 5 𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
53, 4nfcxfr 2956 . . . 4 𝑥𝐸
61, 2, 5nff 6487 . . 3 𝑥 𝐼:𝐴𝐸
7 hashsn01 13777 . . . . . . 7 ((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1)
8 2pos 11732 . . . . . . . . . 10 0 < 2
9 0re 10636 . . . . . . . . . . 11 0 ∈ ℝ
10 2re 11703 . . . . . . . . . . 11 2 ∈ ℝ
119, 10ltnlei 10754 . . . . . . . . . 10 (0 < 2 ↔ ¬ 2 ≤ 0)
128, 11mpbi 233 . . . . . . . . 9 ¬ 2 ≤ 0
13 breq2 5037 . . . . . . . . 9 ((♯‘{𝑈}) = 0 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 0))
1412, 13mtbiri 330 . . . . . . . 8 ((♯‘{𝑈}) = 0 → ¬ 2 ≤ (♯‘{𝑈}))
15 1lt2 11800 . . . . . . . . . 10 1 < 2
16 1re 10634 . . . . . . . . . . 11 1 ∈ ℝ
1716, 10ltnlei 10754 . . . . . . . . . 10 (1 < 2 ↔ ¬ 2 ≤ 1)
1815, 17mpbi 233 . . . . . . . . 9 ¬ 2 ≤ 1
19 breq2 5037 . . . . . . . . 9 ((♯‘{𝑈}) = 1 → (2 ≤ (♯‘{𝑈}) ↔ 2 ≤ 1))
2018, 19mtbiri 330 . . . . . . . 8 ((♯‘{𝑈}) = 1 → ¬ 2 ≤ (♯‘{𝑈}))
2114, 20jaoi 854 . . . . . . 7 (((♯‘{𝑈}) = 0 ∨ (♯‘{𝑈}) = 1) → ¬ 2 ≤ (♯‘{𝑈}))
227, 21ax-mp 5 . . . . . 6 ¬ 2 ≤ (♯‘{𝑈})
23 fveq2 6649 . . . . . . 7 ((𝐼𝑥) = {𝑈} → (♯‘(𝐼𝑥)) = (♯‘{𝑈}))
2423breq2d 5045 . . . . . 6 ((𝐼𝑥) = {𝑈} → (2 ≤ (♯‘(𝐼𝑥)) ↔ 2 ≤ (♯‘{𝑈})))
2522, 24mtbiri 330 . . . . 5 ((𝐼𝑥) = {𝑈} → ¬ 2 ≤ (♯‘(𝐼𝑥)))
26 lfuhgrnloopv.i . . . . . 6 𝐼 = (iEdg‘𝐺)
27 lfuhgrnloopv.a . . . . . 6 𝐴 = dom 𝐼
2826, 27, 3lfgredgge2 26920 . . . . 5 ((𝐼:𝐴𝐸𝑥𝐴) → 2 ≤ (♯‘(𝐼𝑥)))
2925, 28nsyl3 140 . . . 4 ((𝐼:𝐴𝐸𝑥𝐴) → ¬ (𝐼𝑥) = {𝑈})
3029ex 416 . . 3 (𝐼:𝐴𝐸 → (𝑥𝐴 → ¬ (𝐼𝑥) = {𝑈}))
316, 30ralrimi 3183 . 2 (𝐼:𝐴𝐸 → ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
32 rabeq0 4295 . 2 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐼𝑥) = {𝑈})
3331, 32sylibr 237 1 (𝐼:𝐴𝐸 → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2112  wral 3109  {crab 3113  c0 4246  𝒫 cpw 4500  {csn 4528   class class class wbr 5033  dom cdm 5523  wf 6324  cfv 6328  0cc0 10530  1c1 10531   < clt 10668  cle 10669  2c2 11684  chash 13690  iEdgciedg 26793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691
This theorem is referenced by:  vtxdlfgrval  27278
  Copyright terms: Public domain W3C validator