Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmcvg | Structured version Visualization version GIF version |
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
lmcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmcvg.3 | ⊢ (𝜑 → 𝑃 ∈ 𝑈) |
lmcvg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcvg.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcvg.6 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
Ref | Expression |
---|---|
lmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcvg.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑈) | |
2 | eleq2 2827 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈)) | |
3 | eleq2 2827 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑈)) | |
4 | 3 | rexralbidv 3229 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈))) |
6 | lmcvg.5 | . . . . . 6 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
7 | lmrcl 22290 | . . . . . . . . 9 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Top) |
9 | toptopon2 21975 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
10 | 8, 9 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | lmcvg.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
12 | lmcvg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 10, 11, 12 | lmbr2 22318 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
14 | 6, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
15 | 14 | simp3d 1142 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
16 | simpr 484 | . . . . . . . 8 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝐹‘𝑘) ∈ 𝑢) | |
17 | 16 | ralimi 3086 | . . . . . . 7 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
18 | 17 | reximi 3174 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
19 | 18 | imim2i 16 | . . . . 5 ⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
20 | 19 | ralimi 3086 | . . . 4 ⊢ (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
21 | 15, 20 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
22 | lmcvg.6 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
23 | 5, 21, 22 | rspcdva 3554 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℤcz 12249 ℤ≥cuz 12511 Topctop 21950 TopOnctopon 21967 ⇝𝑡clm 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-top 21951 df-topon 21968 df-lm 22288 |
This theorem is referenced by: lmmo 22439 1stccnp 22521 1stckgenlem 22612 iscmet3lem2 24361 |
Copyright terms: Public domain | W3C validator |