MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Structured version   Visualization version   GIF version

Theorem lmcvg 22413
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1 𝑍 = (ℤ𝑀)
lmcvg.3 (𝜑𝑃𝑈)
lmcvg.4 (𝜑𝑀 ∈ ℤ)
lmcvg.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcvg.6 (𝜑𝑈𝐽)
Assertion
Ref Expression
lmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
Distinct variable groups:   𝑗,𝑘,𝐹   𝑗,𝐽,𝑘   𝑃,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑀   𝑗,𝑍,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmcvg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmcvg.3 . 2 (𝜑𝑃𝑈)
2 eleq2 2827 . . . 4 (𝑢 = 𝑈 → (𝑃𝑢𝑃𝑈))
3 eleq2 2827 . . . . 5 (𝑢 = 𝑈 → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑈))
43rexralbidv 3230 . . . 4 (𝑢 = 𝑈 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
52, 4imbi12d 345 . . 3 (𝑢 = 𝑈 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)))
6 lmcvg.5 . . . . . 6 (𝜑𝐹(⇝𝑡𝐽)𝑃)
7 lmrcl 22382 . . . . . . . . 9 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
86, 7syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
9 toptopon2 22067 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 217 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
11 lmcvg.1 . . . . . . 7 𝑍 = (ℤ𝑀)
12 lmcvg.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1310, 11, 12lmbr2 22410 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
146, 13mpbid 231 . . . . 5 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1514simp3d 1143 . . . 4 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
16 simpr 485 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝐹𝑘) ∈ 𝑢)
1716ralimi 3087 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
1817reximi 3178 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
1918imim2i 16 . . . . 5 ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2019ralimi 3087 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2115, 20syl 17 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
22 lmcvg.6 . . 3 (𝜑𝑈𝐽)
235, 21, 22rspcdva 3562 . 2 (𝜑 → (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
241, 23mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   cuni 4839   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  cz 12319  cuz 12582  Topctop 22042  TopOnctopon 22059  𝑡clm 22377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583  df-top 22043  df-topon 22060  df-lm 22380
This theorem is referenced by:  lmmo  22531  1stccnp  22613  1stckgenlem  22704  iscmet3lem2  24456
  Copyright terms: Public domain W3C validator