![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmcvg | Structured version Visualization version GIF version |
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
lmcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmcvg.3 | ⊢ (𝜑 → 𝑃 ∈ 𝑈) |
lmcvg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcvg.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcvg.6 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
Ref | Expression |
---|---|
lmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcvg.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑈) | |
2 | eleq2 2865 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈)) | |
3 | eleq2 2865 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑈)) | |
4 | 3 | rexralbidv 3237 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
5 | 2, 4 | imbi12d 336 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈))) |
6 | lmcvg.5 | . . . . . 6 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
7 | lmrcl 21360 | . . . . . . . . 9 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Top) |
9 | eqid 2797 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | toptopon 21046 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 8, 10 | sylib 210 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | lmcvg.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
13 | lmcvg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | 11, 12, 13 | lmbr2 21388 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
15 | 6, 14 | mpbid 224 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
16 | 15 | simp3d 1175 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
17 | simpr 478 | . . . . . . . 8 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝐹‘𝑘) ∈ 𝑢) | |
18 | 17 | ralimi 3131 | . . . . . . 7 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
19 | 18 | reximi 3189 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
20 | 19 | imim2i 16 | . . . . 5 ⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
21 | 20 | ralimi 3131 | . . . 4 ⊢ (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
22 | 16, 21 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
23 | lmcvg.6 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
24 | 5, 22, 23 | rspcdva 3501 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ∪ cuni 4626 class class class wbr 4841 dom cdm 5310 ‘cfv 6099 (class class class)co 6876 ↑pm cpm 8094 ℂcc 10220 ℤcz 11662 ℤ≥cuz 11926 Topctop 21022 TopOnctopon 21039 ⇝𝑡clm 21355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-er 7980 df-pm 8096 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-neg 10557 df-z 11663 df-uz 11927 df-top 21023 df-topon 21040 df-lm 21358 |
This theorem is referenced by: lmmo 21509 1stccnp 21590 1stckgenlem 21681 iscmet3lem2 23414 |
Copyright terms: Public domain | W3C validator |