| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmcvg | Structured version Visualization version GIF version | ||
| Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmcvg.3 | ⊢ (𝜑 → 𝑃 ∈ 𝑈) |
| lmcvg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcvg.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcvg.6 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| Ref | Expression |
|---|---|
| lmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcvg.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑈) | |
| 2 | eleq2 2820 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈)) | |
| 3 | eleq2 2820 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑈)) | |
| 4 | 3 | rexralbidv 3198 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 5 | 2, 4 | imbi12d 344 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈))) |
| 6 | lmcvg.5 | . . . . . 6 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 7 | lmrcl 23141 | . . . . . . . . 9 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 9 | toptopon2 22828 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | lmcvg.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 12 | lmcvg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | 10, 11, 12 | lmbr2 23169 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 14 | 6, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 15 | 14 | simp3d 1144 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝐹‘𝑘) ∈ 𝑢) | |
| 17 | 16 | ralimi 3069 | . . . . . . 7 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 18 | 17 | reximi 3070 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 19 | 18 | imim2i 16 | . . . . 5 ⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 20 | 19 | ralimi 3069 | . . . 4 ⊢ (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 21 | 15, 20 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 22 | lmcvg.6 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
| 23 | 5, 21, 22 | rspcdva 3573 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∪ cuni 4854 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10999 ℤcz 12463 ℤ≥cuz 12727 Topctop 22803 TopOnctopon 22820 ⇝𝑡clm 23136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-neg 11342 df-z 12464 df-uz 12728 df-top 22804 df-topon 22821 df-lm 23139 |
| This theorem is referenced by: lmmo 23290 1stccnp 23372 1stckgenlem 23463 iscmet3lem2 25214 |
| Copyright terms: Public domain | W3C validator |