MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Structured version   Visualization version   GIF version

Theorem lmcvg 23205
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1 𝑍 = (ℤ𝑀)
lmcvg.3 (𝜑𝑃𝑈)
lmcvg.4 (𝜑𝑀 ∈ ℤ)
lmcvg.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcvg.6 (𝜑𝑈𝐽)
Assertion
Ref Expression
lmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
Distinct variable groups:   𝑗,𝑘,𝐹   𝑗,𝐽,𝑘   𝑃,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑀   𝑗,𝑍,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmcvg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmcvg.3 . 2 (𝜑𝑃𝑈)
2 eleq2 2824 . . . 4 (𝑢 = 𝑈 → (𝑃𝑢𝑃𝑈))
3 eleq2 2824 . . . . 5 (𝑢 = 𝑈 → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑈))
43rexralbidv 3211 . . . 4 (𝑢 = 𝑈 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
52, 4imbi12d 344 . . 3 (𝑢 = 𝑈 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)))
6 lmcvg.5 . . . . . 6 (𝜑𝐹(⇝𝑡𝐽)𝑃)
7 lmrcl 23174 . . . . . . . . 9 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
86, 7syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
9 toptopon2 22861 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 218 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
11 lmcvg.1 . . . . . . 7 𝑍 = (ℤ𝑀)
12 lmcvg.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1310, 11, 12lmbr2 23202 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
146, 13mpbid 232 . . . . 5 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1514simp3d 1144 . . . 4 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
16 simpr 484 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝐹𝑘) ∈ 𝑢)
1716ralimi 3074 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
1817reximi 3075 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
1918imim2i 16 . . . . 5 ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2019ralimi 3074 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2115, 20syl 17 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
22 lmcvg.6 . . 3 (𝜑𝑈𝐽)
235, 21, 22rspcdva 3607 . 2 (𝜑 → (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
241, 23mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061   cuni 4888   class class class wbr 5124  dom cdm 5659  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  cz 12593  cuz 12857  Topctop 22836  TopOnctopon 22853  𝑡clm 23169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-neg 11474  df-z 12594  df-uz 12858  df-top 22837  df-topon 22854  df-lm 23172
This theorem is referenced by:  lmmo  23323  1stccnp  23405  1stckgenlem  23496  iscmet3lem2  25249
  Copyright terms: Public domain W3C validator