Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlidl Structured version   Visualization version   GIF version

Theorem maxidlidl 38030
Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
maxidlidl ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))

Proof of Theorem maxidlidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2730 . . . 4 ran (1st𝑅) = ran (1st𝑅)
31, 2ismaxidl 38029 . . 3 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ ran (1st𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = ran (1st𝑅))))))
4 3anass 1094 . . 3 ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ ran (1st𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = ran (1st𝑅)))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ ran (1st𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = ran (1st𝑅))))))
53, 4bitrdi 287 . 2 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ ran (1st𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = ran (1st𝑅)))))))
65simprbda 498 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3916  ran crn 5641  cfv 6513  1st c1st 7968  RingOpscrngo 37883  Idlcidl 37996  MaxIdlcmaxidl 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fv 6521  df-maxidl 38001
This theorem is referenced by:  maxidln1  38033  maxidln0  38034
  Copyright terms: Public domain W3C validator