Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlidl | Structured version Visualization version GIF version |
Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
maxidlidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | ismaxidl 35948 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ ran (1st ‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = ran (1st ‘𝑅)))))) |
4 | 3anass 1097 | . . 3 ⊢ ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ ran (1st ‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = ran (1st ‘𝑅)))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ ran (1st ‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = ran (1st ‘𝑅)))))) | |
5 | 3, 4 | bitrdi 290 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ ran (1st ‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = ran (1st ‘𝑅))))))) |
6 | 5 | simprbda 502 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∀wral 3062 ⊆ wss 3875 ran crn 5561 ‘cfv 6389 1st c1st 7768 RingOpscrngo 35802 Idlcidl 35915 MaxIdlcmaxidl 35917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pr 5331 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3417 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-iota 6347 df-fun 6391 df-fv 6397 df-maxidl 35920 |
This theorem is referenced by: maxidln1 35952 maxidln0 35953 |
Copyright terms: Public domain | W3C validator |