Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismaxidl | Structured version Visualization version GIF version |
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ismaxidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ismaxidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ismaxidl | ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismaxidl.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ismaxidl.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | maxidlval 36124 | . . 3 ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) |
4 | 3 | eleq2d 2824 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))})) |
5 | neeq1 3005 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝑖 ≠ 𝑋 ↔ 𝑀 ≠ 𝑋)) | |
6 | sseq1 3942 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → (𝑖 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝑗)) | |
7 | eqeq2 2750 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑗 = 𝑖 ↔ 𝑗 = 𝑀)) | |
8 | 7 | orbi1d 913 | . . . . . . 7 ⊢ (𝑖 = 𝑀 → ((𝑗 = 𝑖 ∨ 𝑗 = 𝑋) ↔ (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
9 | 6, 8 | imbi12d 344 | . . . . . 6 ⊢ (𝑖 = 𝑀 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
10 | 9 | ralbidv 3120 | . . . . 5 ⊢ (𝑖 = 𝑀 → (∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
11 | 5, 10 | anbi12d 630 | . . . 4 ⊢ (𝑖 = 𝑀 → ((𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋))) ↔ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
12 | 11 | elrab 3617 | . . 3 ⊢ (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
13 | 3anass 1093 | . . 3 ⊢ ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | |
14 | 12, 13 | bitr4i 277 | . 2 ⊢ (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
15 | 4, 14 | bitrdi 286 | 1 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ⊆ wss 3883 ran crn 5581 ‘cfv 6418 1st c1st 7802 RingOpscrngo 35979 Idlcidl 36092 MaxIdlcmaxidl 36094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-maxidl 36097 |
This theorem is referenced by: maxidlidl 36126 maxidlnr 36127 maxidlmax 36128 |
Copyright terms: Public domain | W3C validator |