Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismaxidl Structured version   Visualization version   GIF version

Theorem ismaxidl 37554
Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ismaxidl.1 𝐺 = (1st𝑅)
ismaxidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
ismaxidl (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
Distinct variable groups:   𝑅,𝑗   𝑗,𝑀
Allowed substitution hints:   𝐺(𝑗)   𝑋(𝑗)

Proof of Theorem ismaxidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ismaxidl.1 . . . 4 𝐺 = (1st𝑅)
2 ismaxidl.2 . . . 4 𝑋 = ran 𝐺
31, 2maxidlval 37553 . . 3 (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
43eleq2d 2815 . 2 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ 𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))}))
5 neeq1 3000 . . . . 5 (𝑖 = 𝑀 → (𝑖𝑋𝑀𝑋))
6 sseq1 4007 . . . . . . 7 (𝑖 = 𝑀 → (𝑖𝑗𝑀𝑗))
7 eqeq2 2740 . . . . . . . 8 (𝑖 = 𝑀 → (𝑗 = 𝑖𝑗 = 𝑀))
87orbi1d 914 . . . . . . 7 (𝑖 = 𝑀 → ((𝑗 = 𝑖𝑗 = 𝑋) ↔ (𝑗 = 𝑀𝑗 = 𝑋)))
96, 8imbi12d 343 . . . . . 6 (𝑖 = 𝑀 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)) ↔ (𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
109ralbidv 3175 . . . . 5 (𝑖 = 𝑀 → (∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
115, 10anbi12d 630 . . . 4 (𝑖 = 𝑀 → ((𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))) ↔ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
1211elrab 3684 . . 3 (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
13 3anass 1092 . . 3 ((𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ (𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
1412, 13bitr4i 277 . 2 (𝑀 ∈ {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
154, 14bitrdi 286 1 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  {crab 3430  wss 3949  ran crn 5683  cfv 6553  1st c1st 7999  RingOpscrngo 37408  Idlcidl 37521  MaxIdlcmaxidl 37523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fv 6561  df-maxidl 37526
This theorem is referenced by:  maxidlidl  37555  maxidlnr  37556  maxidlmax  37557
  Copyright terms: Public domain W3C validator