Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln1 | Structured version Visualization version GIF version |
Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
maxidln1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
maxidln1.2 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
maxidln1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | maxidlnr 36127 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st ‘𝑅)) |
4 | maxidlidl 36126 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
5 | maxidln1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | maxidln1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
7 | 1, 5, 2, 6 | 1idl 36111 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝑀 ↔ 𝑀 = ran (1st ‘𝑅))) |
8 | 7 | necon3bbid 2980 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
9 | 4, 8 | syldan 590 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
10 | 3, 9 | mpbird 256 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ran crn 5581 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GIdcgi 28753 RingOpscrngo 35979 Idlcidl 36092 MaxIdlcmaxidl 36094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 df-idl 36095 df-maxidl 36097 |
This theorem is referenced by: maxidln0 36130 |
Copyright terms: Public domain | W3C validator |