| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln1 | Structured version Visualization version GIF version | ||
| Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| maxidln1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| maxidln1.2 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| maxidln1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2733 | . . 3 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | maxidlnr 38155 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st ‘𝑅)) |
| 4 | maxidlidl 38154 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
| 5 | maxidln1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | maxidln1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 7 | 1, 5, 2, 6 | 1idl 38139 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝑀 ↔ 𝑀 = ran (1st ‘𝑅))) |
| 8 | 7 | necon3bbid 2966 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
| 9 | 4, 8 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
| 10 | 3, 9 | mpbird 257 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ran crn 5622 ‘cfv 6489 1st c1st 7928 2nd c2nd 7929 GIdcgi 30491 RingOpscrngo 38007 Idlcidl 38120 MaxIdlcmaxidl 38122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-riota 7312 df-ov 7358 df-1st 7930 df-2nd 7931 df-grpo 30494 df-gid 30495 df-ablo 30546 df-ass 37956 df-exid 37958 df-mgmOLD 37962 df-sgrOLD 37974 df-mndo 37980 df-rngo 38008 df-idl 38123 df-maxidl 38125 |
| This theorem is referenced by: maxidln0 38158 |
| Copyright terms: Public domain | W3C validator |