![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln1 | Structured version Visualization version GIF version |
Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
maxidln1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
maxidln1.2 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
maxidln1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | eqid 2825 | . . 3 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
3 | 1, 2 | maxidlnr 34376 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st ‘𝑅)) |
4 | maxidlidl 34375 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
5 | maxidln1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | maxidln1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
7 | 1, 5, 2, 6 | 1idl 34360 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝑀 ↔ 𝑀 = ran (1st ‘𝑅))) |
8 | 7 | necon3bbid 3036 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
9 | 4, 8 | syldan 585 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
10 | 3, 9 | mpbird 249 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ran crn 5343 ‘cfv 6123 1st c1st 7426 2nd c2nd 7427 GIdcgi 27889 RingOpscrngo 34228 Idlcidl 34341 MaxIdlcmaxidl 34343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fo 6129 df-fv 6131 df-riota 6866 df-ov 6908 df-1st 7428 df-2nd 7429 df-grpo 27892 df-gid 27893 df-ablo 27944 df-ass 34177 df-exid 34179 df-mgmOLD 34183 df-sgrOLD 34195 df-mndo 34201 df-rngo 34229 df-idl 34344 df-maxidl 34346 |
This theorem is referenced by: maxidln0 34379 |
Copyright terms: Public domain | W3C validator |