| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln1 | Structured version Visualization version GIF version | ||
| Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| maxidln1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| maxidln1.2 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| maxidln1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 3 | 1, 2 | maxidlnr 38036 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st ‘𝑅)) |
| 4 | maxidlidl 38035 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
| 5 | maxidln1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | maxidln1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 7 | 1, 5, 2, 6 | 1idl 38020 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝑀 ↔ 𝑀 = ran (1st ‘𝑅))) |
| 8 | 7 | necon3bbid 2962 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
| 9 | 4, 8 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈 ∈ 𝑀 ↔ 𝑀 ≠ ran (1st ‘𝑅))) |
| 10 | 3, 9 | mpbird 257 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ran crn 5639 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 GIdcgi 30419 RingOpscrngo 37888 Idlcidl 38001 MaxIdlcmaxidl 38003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-riota 7344 df-ov 7390 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gid 30423 df-ablo 30474 df-ass 37837 df-exid 37839 df-mgmOLD 37843 df-sgrOLD 37855 df-mndo 37861 df-rngo 37889 df-idl 38004 df-maxidl 38006 |
| This theorem is referenced by: maxidln0 38039 |
| Copyright terms: Public domain | W3C validator |