Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidln1 Structured version   Visualization version   GIF version

Theorem maxidln1 37558
Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
maxidln1.1 𝐻 = (2nd𝑅)
maxidln1.2 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
maxidln1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)

Proof of Theorem maxidln1
StepHypRef Expression
1 eqid 2728 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2728 . . 3 ran (1st𝑅) = ran (1st𝑅)
31, 2maxidlnr 37556 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st𝑅))
4 maxidlidl 37555 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
5 maxidln1.1 . . . . 5 𝐻 = (2nd𝑅)
6 maxidln1.2 . . . . 5 𝑈 = (GId‘𝐻)
71, 5, 2, 61idl 37540 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈𝑀𝑀 = ran (1st𝑅)))
87necon3bbid 2975 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈𝑀𝑀 ≠ ran (1st𝑅)))
94, 8syldan 589 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈𝑀𝑀 ≠ ran (1st𝑅)))
103, 9mpbird 256 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  ran crn 5683  cfv 6553  1st c1st 7999  2nd c2nd 8000  GIdcgi 30328  RingOpscrngo 37408  Idlcidl 37521  MaxIdlcmaxidl 37523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-riota 7382  df-ov 7429  df-1st 8001  df-2nd 8002  df-grpo 30331  df-gid 30332  df-ablo 30383  df-ass 37357  df-exid 37359  df-mgmOLD 37363  df-sgrOLD 37375  df-mndo 37381  df-rngo 37409  df-idl 37524  df-maxidl 37526
This theorem is referenced by:  maxidln0  37559
  Copyright terms: Public domain W3C validator