Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidln1 Structured version   Visualization version   GIF version

Theorem maxidln1 38157
Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
maxidln1.1 𝐻 = (2nd𝑅)
maxidln1.2 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
maxidln1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)

Proof of Theorem maxidln1
StepHypRef Expression
1 eqid 2733 . . 3 (1st𝑅) = (1st𝑅)
2 eqid 2733 . . 3 ran (1st𝑅) = ran (1st𝑅)
31, 2maxidlnr 38155 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ ran (1st𝑅))
4 maxidlidl 38154 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
5 maxidln1.1 . . . . 5 𝐻 = (2nd𝑅)
6 maxidln1.2 . . . . 5 𝑈 = (GId‘𝐻)
71, 5, 2, 61idl 38139 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (𝑈𝑀𝑀 = ran (1st𝑅)))
87necon3bbid 2966 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → (¬ 𝑈𝑀𝑀 ≠ ran (1st𝑅)))
94, 8syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (¬ 𝑈𝑀𝑀 ≠ ran (1st𝑅)))
103, 9mpbird 257 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  ran crn 5622  cfv 6489  1st c1st 7928  2nd c2nd 7929  GIdcgi 30491  RingOpscrngo 38007  Idlcidl 38120  MaxIdlcmaxidl 38122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-riota 7312  df-ov 7358  df-1st 7930  df-2nd 7931  df-grpo 30494  df-gid 30495  df-ablo 30546  df-ass 37956  df-exid 37958  df-mgmOLD 37962  df-sgrOLD 37974  df-mndo 37980  df-rngo 38008  df-idl 38123  df-maxidl 38125
This theorem is referenced by:  maxidln0  38158
  Copyright terms: Public domain W3C validator