Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlmax | Structured version Visualization version GIF version |
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
maxidlnr.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
maxidlmax | ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlnr.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | maxidlnr.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | ismaxidl 36311 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
4 | 3 | biimpa 477 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
5 | 4 | simp3d 1143 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
6 | sseq2 3958 | . . . . . 6 ⊢ (𝑗 = 𝐼 → (𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼)) | |
7 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑀 ↔ 𝐼 = 𝑀)) | |
8 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑋 ↔ 𝐼 = 𝑋)) | |
9 | 7, 8 | orbi12d 916 | . . . . . 6 ⊢ (𝑗 = 𝐼 → ((𝑗 = 𝑀 ∨ 𝑗 = 𝑋) ↔ (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
10 | 6, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝐼 → ((𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)))) |
11 | 10 | rspcva 3568 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
12 | 5, 11 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
13 | 12 | ancoms 459 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
14 | 13 | impr 455 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ⊆ wss 3898 ran crn 5621 ‘cfv 6479 1st c1st 7897 RingOpscrngo 36165 Idlcidl 36278 MaxIdlcmaxidl 36280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fv 6487 df-maxidl 36283 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |