![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlmax | Structured version Visualization version GIF version |
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
maxidlnr.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
maxidlmax | ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlnr.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | maxidlnr.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | ismaxidl 34463 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
4 | 3 | biimpa 470 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
5 | 4 | simp3d 1135 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
6 | sseq2 3846 | . . . . . 6 ⊢ (𝑗 = 𝐼 → (𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼)) | |
7 | eqeq1 2782 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑀 ↔ 𝐼 = 𝑀)) | |
8 | eqeq1 2782 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑋 ↔ 𝐼 = 𝑋)) | |
9 | 7, 8 | orbi12d 905 | . . . . . 6 ⊢ (𝑗 = 𝐼 → ((𝑗 = 𝑀 ∨ 𝑗 = 𝑋) ↔ (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
10 | 6, 9 | imbi12d 336 | . . . . 5 ⊢ (𝑗 = 𝐼 → ((𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)))) |
11 | 10 | rspcva 3509 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
12 | 5, 11 | sylan2 586 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
13 | 12 | ancoms 452 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
14 | 13 | impr 448 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 836 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ⊆ wss 3792 ran crn 5356 ‘cfv 6135 1st c1st 7443 RingOpscrngo 34317 Idlcidl 34430 MaxIdlcmaxidl 34432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fv 6143 df-maxidl 34435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |