| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlmax | Structured version Visualization version GIF version | ||
| Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| maxidlnr.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| maxidlmax | ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | maxidlnr.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | maxidlnr.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1, 2 | ismaxidl 38079 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
| 4 | 3 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
| 5 | 4 | simp3d 1144 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
| 6 | sseq2 3956 | . . . . . 6 ⊢ (𝑗 = 𝐼 → (𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼)) | |
| 7 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑀 ↔ 𝐼 = 𝑀)) | |
| 8 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑋 ↔ 𝐼 = 𝑋)) | |
| 9 | 7, 8 | orbi12d 918 | . . . . . 6 ⊢ (𝑗 = 𝐼 → ((𝑗 = 𝑀 ∨ 𝑗 = 𝑋) ↔ (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
| 10 | 6, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑗 = 𝐼 → ((𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)))) |
| 11 | 10 | rspcva 3570 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
| 12 | 5, 11 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
| 13 | 12 | ancoms 458 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
| 14 | 13 | impr 454 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ran crn 5615 ‘cfv 6481 1st c1st 7919 RingOpscrngo 37933 Idlcidl 38046 MaxIdlcmaxidl 38048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-maxidl 38051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |