![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidlmax | Structured version Visualization version GIF version |
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
maxidlnr.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
maxidlmax | ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlnr.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | maxidlnr.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | ismaxidl 36908 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) |
4 | 3 | biimpa 478 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)))) |
5 | 4 | simp3d 1145 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) |
6 | sseq2 4009 | . . . . . 6 ⊢ (𝑗 = 𝐼 → (𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼)) | |
7 | eqeq1 2737 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑀 ↔ 𝐼 = 𝑀)) | |
8 | eqeq1 2737 | . . . . . . 7 ⊢ (𝑗 = 𝐼 → (𝑗 = 𝑋 ↔ 𝐼 = 𝑋)) | |
9 | 7, 8 | orbi12d 918 | . . . . . 6 ⊢ (𝑗 = 𝐼 → ((𝑗 = 𝑀 ∨ 𝑗 = 𝑋) ↔ (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
10 | 6, 9 | imbi12d 345 | . . . . 5 ⊢ (𝑗 = 𝐼 → ((𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋)) ↔ (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)))) |
11 | 10 | rspcva 3611 | . . . 4 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
12 | 5, 11 | sylan2 594 | . . 3 ⊢ ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
13 | 12 | ancoms 460 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀 ⊆ 𝐼 → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋))) |
14 | 13 | impr 456 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ⊆ wss 3949 ran crn 5678 ‘cfv 6544 1st c1st 7973 RingOpscrngo 36762 Idlcidl 36875 MaxIdlcmaxidl 36877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-maxidl 36880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |