Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlmax Structured version   Visualization version   GIF version

Theorem maxidlmax 38033
Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
maxidlnr.1 𝐺 = (1st𝑅)
maxidlnr.2 𝑋 = ran 𝐺
Assertion
Ref Expression
maxidlmax (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝑋))

Proof of Theorem maxidlmax
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 maxidlnr.1 . . . . . . 7 𝐺 = (1st𝑅)
2 maxidlnr.2 . . . . . . 7 𝑋 = ran 𝐺
31, 2ismaxidl 38030 . . . . . 6 (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))))
43biimpa 476 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))))
54simp3d 1144 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)))
6 sseq2 3962 . . . . . 6 (𝑗 = 𝐼 → (𝑀𝑗𝑀𝐼))
7 eqeq1 2733 . . . . . . 7 (𝑗 = 𝐼 → (𝑗 = 𝑀𝐼 = 𝑀))
8 eqeq1 2733 . . . . . . 7 (𝑗 = 𝐼 → (𝑗 = 𝑋𝐼 = 𝑋))
97, 8orbi12d 918 . . . . . 6 (𝑗 = 𝐼 → ((𝑗 = 𝑀𝑗 = 𝑋) ↔ (𝐼 = 𝑀𝐼 = 𝑋)))
106, 9imbi12d 344 . . . . 5 (𝑗 = 𝐼 → ((𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋)) ↔ (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋))))
1110rspcva 3575 . . . 4 ((𝐼 ∈ (Idl‘𝑅) ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀𝑗 → (𝑗 = 𝑀𝑗 = 𝑋))) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
125, 11sylan2 593 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ (𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅))) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
1312ancoms 458 . 2 (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑀𝐼 → (𝐼 = 𝑀𝐼 = 𝑋)))
1413impr 454 1 (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3903  ran crn 5620  cfv 6482  1st c1st 7922  RingOpscrngo 37884  Idlcidl 37997  MaxIdlcmaxidl 37999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-maxidl 38002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator