MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem4 Structured version   Visualization version   GIF version

Theorem mdetunilem4 20640
Description: Lemma for mdetuni 20647. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
Assertion
Ref Expression
mdetunilem4 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ (𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐾,𝑦,𝑧,𝑤   𝑥,𝑁,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝑥, · ,𝑦,𝑧,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, 0 ,𝑦,𝑧,𝑤   𝑥, 1 ,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤

Proof of Theorem mdetunilem4
StepHypRef Expression
1 simp32 1252 . 2 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ (𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))))
2 simp33 1253 . 2 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ (𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))
3 simp1 1130 . . 3 ((𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))) → 𝐻𝑁)
4 simp23 1250 . . . 4 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → 𝐺𝐵)
5 simp3 1132 . . . 4 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → 𝐻𝑁)
6 simp21 1248 . . . . 5 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → 𝐸𝐵)
7 simp22 1249 . . . . 5 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → 𝐹𝐾)
8 mdetuni.sc . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
983ad2ant1 1127 . . . . 5 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
10 reseq1 5529 . . . . . . . . . 10 (𝑥 = 𝐸 → (𝑥 ↾ ({𝑤} × 𝑁)) = (𝐸 ↾ ({𝑤} × 𝑁)))
1110eqeq1d 2773 . . . . . . . . 9 (𝑥 = 𝐸 → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁)))))
12 reseq1 5529 . . . . . . . . . 10 (𝑥 = 𝐸 → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
1312eqeq1d 2773 . . . . . . . . 9 (𝑥 = 𝐸 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
1411, 13anbi12d 610 . . . . . . . 8 (𝑥 = 𝐸 → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
15 fveq2 6333 . . . . . . . . 9 (𝑥 = 𝐸 → (𝐷𝑥) = (𝐷𝐸))
1615eqeq1d 2773 . . . . . . . 8 (𝑥 = 𝐸 → ((𝐷𝑥) = (𝑦 · (𝐷𝑧)) ↔ (𝐷𝐸) = (𝑦 · (𝐷𝑧))))
1714, 16imbi12d 333 . . . . . . 7 (𝑥 = 𝐸 → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))) ↔ (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝑦 · (𝐷𝑧)))))
18172ralbidv 3138 . . . . . 6 (𝑥 = 𝐸 → (∀𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝑦 · (𝐷𝑧)))))
19 sneq 4327 . . . . . . . . . . . 12 (𝑦 = 𝐹 → {𝑦} = {𝐹})
2019xpeq2d 5280 . . . . . . . . . . 11 (𝑦 = 𝐹 → (({𝑤} × 𝑁) × {𝑦}) = (({𝑤} × 𝑁) × {𝐹}))
2120oveq1d 6809 . . . . . . . . . 10 (𝑦 = 𝐹 → ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))))
2221eqeq2d 2781 . . . . . . . . 9 (𝑦 = 𝐹 → ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁)))))
2322anbi1d 609 . . . . . . . 8 (𝑦 = 𝐹 → (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
24 oveq1 6801 . . . . . . . . 9 (𝑦 = 𝐹 → (𝑦 · (𝐷𝑧)) = (𝐹 · (𝐷𝑧)))
2524eqeq2d 2781 . . . . . . . 8 (𝑦 = 𝐹 → ((𝐷𝐸) = (𝑦 · (𝐷𝑧)) ↔ (𝐷𝐸) = (𝐹 · (𝐷𝑧))))
2623, 25imbi12d 333 . . . . . . 7 (𝑦 = 𝐹 → ((((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝑦 · (𝐷𝑧))) ↔ (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧)))))
27262ralbidv 3138 . . . . . 6 (𝑦 = 𝐹 → (∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝑦 · (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧)))))
2818, 27rspc2va 3474 . . . . 5 (((𝐸𝐵𝐹𝐾) ∧ ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧)))) → ∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧))))
296, 7, 9, 28syl21anc 1475 . . . 4 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → ∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧))))
30 reseq1 5529 . . . . . . . . 9 (𝑧 = 𝐺 → (𝑧 ↾ ({𝑤} × 𝑁)) = (𝐺 ↾ ({𝑤} × 𝑁)))
3130oveq2d 6810 . . . . . . . 8 (𝑧 = 𝐺 → ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))))
3231eqeq2d 2781 . . . . . . 7 (𝑧 = 𝐺 → ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁)))))
33 reseq1 5529 . . . . . . . 8 (𝑧 = 𝐺 → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
3433eqeq2d 2781 . . . . . . 7 (𝑧 = 𝐺 → ((𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
3532, 34anbi12d 610 . . . . . 6 (𝑧 = 𝐺 → (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
36 fveq2 6333 . . . . . . . 8 (𝑧 = 𝐺 → (𝐷𝑧) = (𝐷𝐺))
3736oveq2d 6810 . . . . . . 7 (𝑧 = 𝐺 → (𝐹 · (𝐷𝑧)) = (𝐹 · (𝐷𝐺)))
3837eqeq2d 2781 . . . . . 6 (𝑧 = 𝐺 → ((𝐷𝐸) = (𝐹 · (𝐷𝑧)) ↔ (𝐷𝐸) = (𝐹 · (𝐷𝐺))))
3935, 38imbi12d 333 . . . . 5 (𝑧 = 𝐺 → ((((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧))) ↔ (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺)))))
40 sneq 4327 . . . . . . . . . 10 (𝑤 = 𝐻 → {𝑤} = {𝐻})
4140xpeq1d 5279 . . . . . . . . 9 (𝑤 = 𝐻 → ({𝑤} × 𝑁) = ({𝐻} × 𝑁))
4241reseq2d 5535 . . . . . . . 8 (𝑤 = 𝐻 → (𝐸 ↾ ({𝑤} × 𝑁)) = (𝐸 ↾ ({𝐻} × 𝑁)))
4341xpeq1d 5279 . . . . . . . . 9 (𝑤 = 𝐻 → (({𝑤} × 𝑁) × {𝐹}) = (({𝐻} × 𝑁) × {𝐹}))
4441reseq2d 5535 . . . . . . . . 9 (𝑤 = 𝐻 → (𝐺 ↾ ({𝑤} × 𝑁)) = (𝐺 ↾ ({𝐻} × 𝑁)))
4543, 44oveq12d 6812 . . . . . . . 8 (𝑤 = 𝐻 → ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))))
4642, 45eqeq12d 2786 . . . . . . 7 (𝑤 = 𝐻 → ((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) ↔ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁)))))
4740difeq2d 3880 . . . . . . . . . 10 (𝑤 = 𝐻 → (𝑁 ∖ {𝑤}) = (𝑁 ∖ {𝐻}))
4847xpeq1d 5279 . . . . . . . . 9 (𝑤 = 𝐻 → ((𝑁 ∖ {𝑤}) × 𝑁) = ((𝑁 ∖ {𝐻}) × 𝑁))
4948reseq2d 5535 . . . . . . . 8 (𝑤 = 𝐻 → (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))
5048reseq2d 5535 . . . . . . . 8 (𝑤 = 𝐻 → (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))
5149, 50eqeq12d 2786 . . . . . . 7 (𝑤 = 𝐻 → ((𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))))
5246, 51anbi12d 610 . . . . . 6 (𝑤 = 𝐻 → (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))))
5352imbi1d 330 . . . . 5 (𝑤 = 𝐻 → ((((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺))) ↔ (((𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺)))))
5439, 53rspc2va 3474 . . . 4 (((𝐺𝐵𝐻𝑁) ∧ ∀𝑧𝐵𝑤𝑁 (((𝐸 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝐹}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝑧)))) → (((𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺))))
554, 5, 29, 54syl21anc 1475 . . 3 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ 𝐻𝑁) → (((𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺))))
563, 55syl3an3 1169 . 2 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ (𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (((𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺))))
571, 2, 56mp2and 673 1 ((𝜑 ∧ (𝐸𝐵𝐹𝐾𝐺𝐵) ∧ (𝐻𝑁 ∧ (𝐸 ↾ ({𝐻} × 𝑁)) = ((({𝐻} × 𝑁) × {𝐹}) ∘𝑓 · (𝐺 ↾ ({𝐻} × 𝑁))) ∧ (𝐸 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)) = (𝐺 ↾ ((𝑁 ∖ {𝐻}) × 𝑁)))) → (𝐷𝐸) = (𝐹 · (𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3721  {csn 4317   × cxp 5248  cres 5252  wf 6028  cfv 6032  (class class class)co 6794  𝑓 cof 7043  Fincfn 8110  Basecbs 16065  +gcplusg 16150  .rcmulr 16151  0gc0g 16309  1rcur 18710  Ringcrg 18756   Mat cmat 20431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-xp 5256  df-res 5262  df-iota 5995  df-fv 6040  df-ov 6797
This theorem is referenced by:  mdetuni0  20646
  Copyright terms: Public domain W3C validator