Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cnlnadjeui | Structured version Visualization version GIF version |
Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnadj.1 | ⊢ 𝑇 ∈ LinOp |
cnlnadj.2 | ⊢ 𝑇 ∈ ContOp |
Ref | Expression |
---|---|
cnlnadjeui | ⊢ ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadj.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
2 | cnlnadj.2 | . . 3 ⊢ 𝑇 ∈ ContOp | |
3 | 1, 2 | cnlnadji 30792 | . 2 ⊢ ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) |
4 | adjmo 30548 | . . 3 ⊢ ∃*𝑡(𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) | |
5 | inss1 4183 | . . . . . . . 8 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
6 | 5 | sseli 3935 | . . . . . . 7 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡 ∈ LinOp) |
7 | lnopf 30575 | . . . . . . 7 ⊢ (𝑡 ∈ LinOp → 𝑡: ℋ⟶ ℋ) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝑡 ∈ (LinOp ∩ ContOp) → 𝑡: ℋ⟶ ℋ) |
9 | simpl 484 | . . . . . . 7 ⊢ ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) → 𝑡: ℋ⟶ ℋ) | |
10 | eqcom 2744 | . . . . . . . . . 10 ⊢ (((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) | |
11 | 10 | 2ralbii 3125 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | 1 | lnopfi 30685 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ ℋ |
13 | adjsym 30549 | . . . . . . . . . 10 ⊢ ((𝑡: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) | |
14 | 12, 13 | mpan2 689 | . . . . . . . . 9 ⊢ (𝑡: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
15 | 11, 14 | bitrid 283 | . . . . . . . 8 ⊢ (𝑡: ℋ⟶ ℋ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
16 | 15 | biimpa 478 | . . . . . . 7 ⊢ ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) |
17 | 9, 16 | jca 513 | . . . . . 6 ⊢ ((𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) → (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
18 | 8, 17 | sylan 581 | . . . . 5 ⊢ ((𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) → (𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦))) |
19 | 18 | moimi 2544 | . . . 4 ⊢ (∃*𝑡(𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → ∃*𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) |
20 | df-rmo 3351 | . . . 4 ⊢ (∃*𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ ∃*𝑡(𝑡 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) | |
21 | 19, 20 | sylibr 233 | . . 3 ⊢ (∃*𝑡(𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)) → ∃*𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦))) |
22 | 4, 21 | ax-mp 5 | . 2 ⊢ ∃*𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) |
23 | reu5 3353 | . 2 ⊢ (∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ↔ (∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) ∧ ∃*𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)))) | |
24 | 3, 22, 23 | mpbir2an 709 | 1 ⊢ ∃!𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑡‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃*wmo 2537 ∀wral 3062 ∃wrex 3071 ∃!wreu 3349 ∃*wrmo 3350 ∩ cin 3904 ⟶wf 6484 ‘cfv 6488 (class class class)co 7346 ℋchba 29635 ·ih csp 29638 ContOpccop 29662 LinOpclo 29663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cc 10301 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 ax-addf 11060 ax-mulf 11061 ax-hilex 29715 ax-hfvadd 29716 ax-hvcom 29717 ax-hvass 29718 ax-hv0cl 29719 ax-hvaddid 29720 ax-hfvmul 29721 ax-hvmulid 29722 ax-hvmulass 29723 ax-hvdistr1 29724 ax-hvdistr2 29725 ax-hvmul0 29726 ax-hfi 29795 ax-his1 29798 ax-his2 29799 ax-his3 29800 ax-his4 29801 ax-hcompl 29918 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-iin 4952 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7604 df-om 7790 df-1st 7908 df-2nd 7909 df-supp 8057 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-2o 8377 df-oadd 8380 df-omul 8381 df-er 8578 df-map 8697 df-pm 8698 df-ixp 8766 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-fsupp 9236 df-fi 9277 df-sup 9308 df-inf 9309 df-oi 9376 df-card 9805 df-acn 9808 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-z 12430 df-dec 12548 df-uz 12693 df-q 12799 df-rp 12841 df-xneg 12958 df-xadd 12959 df-xmul 12960 df-ioo 13193 df-ico 13195 df-icc 13196 df-fz 13350 df-fzo 13493 df-fl 13622 df-seq 13832 df-exp 13893 df-hash 14155 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-clim 15301 df-rlim 15302 df-sum 15502 df-struct 16950 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-ress 17044 df-plusg 17077 df-mulr 17078 df-starv 17079 df-sca 17080 df-vsca 17081 df-ip 17082 df-tset 17083 df-ple 17084 df-ds 17086 df-unif 17087 df-hom 17088 df-cco 17089 df-rest 17235 df-topn 17236 df-0g 17254 df-gsum 17255 df-topgen 17256 df-pt 17257 df-prds 17260 df-xrs 17315 df-qtop 17320 df-imas 17321 df-xps 17323 df-mre 17397 df-mrc 17398 df-acs 17400 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-submnd 18533 df-mulg 18802 df-cntz 19024 df-cmn 19488 df-psmet 20699 df-xmet 20700 df-met 20701 df-bl 20702 df-mopn 20703 df-fbas 20704 df-fg 20705 df-cnfld 20708 df-top 22153 df-topon 22170 df-topsp 22192 df-bases 22206 df-cld 22280 df-ntr 22281 df-cls 22282 df-nei 22359 df-cn 22488 df-cnp 22489 df-lm 22490 df-t1 22575 df-haus 22576 df-tx 22823 df-hmeo 23016 df-fil 23107 df-fm 23199 df-flim 23200 df-flf 23201 df-xms 23583 df-ms 23584 df-tms 23585 df-cfil 24529 df-cau 24530 df-cmet 24531 df-grpo 29209 df-gid 29210 df-ginv 29211 df-gdiv 29212 df-ablo 29261 df-vc 29275 df-nv 29308 df-va 29311 df-ba 29312 df-sm 29313 df-0v 29314 df-vs 29315 df-nmcv 29316 df-ims 29317 df-dip 29417 df-ssp 29438 df-ph 29529 df-cbn 29579 df-hnorm 29684 df-hba 29685 df-hvsub 29687 df-hlim 29688 df-hcau 29689 df-sh 29923 df-ch 29937 df-oc 29968 df-ch0 29969 df-nmop 30555 df-cnop 30556 df-lnop 30557 df-unop 30559 df-nmfn 30561 df-nlfn 30562 df-cnfn 30563 df-lnfn 30564 |
This theorem is referenced by: cnlnadjeu 30794 |
Copyright terms: Public domain | W3C validator |