MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcn Structured version   Visualization version   GIF version

Theorem ipcn 24410
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.f , = (·if𝑊)
ipcn.j 𝐽 = (TopOpen‘𝑊)
ipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipcn (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem ipcn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 24335 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2738 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 ipcn.f . . . . . 6 , = (·if𝑊)
4 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
62, 3, 4, 5phlipf 20857 . . . . 5 (𝑊 ∈ PreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
71, 6syl 17 . . . 4 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
8 cphclm 24353 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
94, 5clmsscn 24242 . . . . 5 (𝑊 ∈ ℂMod → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
108, 9syl 17 . . . 4 (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
117, 10fssd 6618 . . 3 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
12 eqid 2738 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
13 eqid 2738 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
14 eqid 2738 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
15 eqid 2738 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))
16 eqid 2738 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))))
17 simpll 764 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ ℂPreHil)
18 simplrl 774 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝑊))
19 simplrr 775 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
20 simpr 485 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
212, 12, 13, 14, 15, 16, 17, 18, 19, 20ipcnlem1 24409 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
2221ralrimiva 3103 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
23 simplrl 774 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
24 simprl 768 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
2523, 24ovresd 7439 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) = (𝑥(dist‘𝑊)𝑧))
2625breq1d 5084 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝑊)𝑧) < 𝑠))
27 simplrr 775 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
28 simprr 770 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2927, 28ovresd 7439 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
3029breq1d 5084 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
3126, 30anbi12d 631 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
3211ad2antrr 723 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
3332, 23, 27fovrnd 7444 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) ∈ ℂ)
3432, 24, 28fovrnd 7444 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) ∈ ℂ)
35 eqid 2738 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
3635cnmetdval 23934 . . . . . . . . . . . 12 (((𝑥 , 𝑦) ∈ ℂ ∧ (𝑧 , 𝑤) ∈ ℂ) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
3733, 34, 36syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
382, 12, 3ipfval 20854 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
3923, 27, 38syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
402, 12, 3ipfval 20854 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4140adantl 482 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4239, 41oveq12d 7293 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦) − (𝑧 , 𝑤)) = ((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤)))
4342fveq2d 6778 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4437, 43eqtrd 2778 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4544breq1d 5084 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟 ↔ (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
4631, 45imbi12d 345 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
47462ralbidva 3128 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4847rexbidv 3226 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4948ralbidv 3112 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
5022, 49mpbird 256 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
5150ralrimivva 3123 . . 3 (𝑊 ∈ ℂPreHil → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
52 cphngp 24337 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
53 ngpms 23756 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5452, 53syl 17 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp)
55 msxms 23607 . . . . . 6 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5654, 55syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp)
57 eqid 2738 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
582, 57xmsxmet 23609 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
5956, 58syl 17 . . . 4 (𝑊 ∈ ℂPreHil → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
60 cnxmet 23936 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
6160a1i 11 . . . 4 (𝑊 ∈ ℂPreHil → (abs ∘ − ) ∈ (∞Met‘ℂ))
62 eqid 2738 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
63 ipcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6463cnfldtopn 23945 . . . . 5 𝐾 = (MetOpen‘(abs ∘ − ))
6562, 62, 64txmetcn 23704 . . . 4 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6659, 59, 61, 65syl3anc 1370 . . 3 (𝑊 ∈ ℂPreHil → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6711, 51, 66mpbir2and 710 . 2 (𝑊 ∈ ℂPreHil → , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
68 ipcn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6968, 2, 57mstopn 23605 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7054, 69syl 17 . . . 4 (𝑊 ∈ ℂPreHil → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7170, 70oveq12d 7293 . . 3 (𝑊 ∈ ℂPreHil → (𝐽 ×t 𝐽) = ((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7271oveq1d 7290 . 2 (𝑊 ∈ ℂPreHil → ((𝐽 ×t 𝐽) Cn 𝐾) = (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
7367, 72eleqtrrd 2842 1 (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074   × cxp 5587  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   < clt 11009  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730  abscabs 14945  Basecbs 16912  Scalarcsca 16965  ·𝑖cip 16967  distcds 16971  TopOpenctopn 17132  ∞Metcxmet 20582  MetOpencmopn 20587  fldccnfld 20597  PreHilcphl 20829  ·ifcipf 20830   Cn ccn 22375   ×t ctx 22711  ∞MetSpcxms 23470  MetSpcms 23471  normcnm 23732  NrmGrpcngp 23733  ℂModcclm 24225  ℂPreHilccph 24330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-staf 20105  df-srng 20106  df-lmod 20125  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-phl 20831  df-ipf 20832  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-tng 23740  df-nlm 23742  df-clm 24226  df-cph 24332  df-tcph 24333
This theorem is referenced by:  cnmpt1ip  24411  cnmpt2ip  24412
  Copyright terms: Public domain W3C validator