MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcn Structured version   Visualization version   GIF version

Theorem ipcn 25144
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.f , = (·if𝑊)
ipcn.j 𝐽 = (TopOpen‘𝑊)
ipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipcn (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem ipcn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 25069 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 ipcn.f . . . . . 6 , = (·if𝑊)
4 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
62, 3, 4, 5phlipf 21559 . . . . 5 (𝑊 ∈ PreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
71, 6syl 17 . . . 4 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
8 cphclm 25087 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
94, 5clmsscn 24977 . . . . 5 (𝑊 ∈ ℂMod → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
108, 9syl 17 . . . 4 (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
117, 10fssd 6669 . . 3 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
12 eqid 2729 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
13 eqid 2729 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
14 eqid 2729 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
15 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))
16 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))))
17 simpll 766 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ ℂPreHil)
18 simplrl 776 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝑊))
19 simplrr 777 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
20 simpr 484 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
212, 12, 13, 14, 15, 16, 17, 18, 19, 20ipcnlem1 25143 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
2221ralrimiva 3121 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
23 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
24 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
2523, 24ovresd 7516 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) = (𝑥(dist‘𝑊)𝑧))
2625breq1d 5102 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝑊)𝑧) < 𝑠))
27 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
28 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2927, 28ovresd 7516 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
3029breq1d 5102 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
3126, 30anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
3211ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
3332, 23, 27fovcdmd 7521 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) ∈ ℂ)
3432, 24, 28fovcdmd 7521 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) ∈ ℂ)
35 eqid 2729 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
3635cnmetdval 24656 . . . . . . . . . . . 12 (((𝑥 , 𝑦) ∈ ℂ ∧ (𝑧 , 𝑤) ∈ ℂ) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
3733, 34, 36syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
382, 12, 3ipfval 21556 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
3923, 27, 38syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
402, 12, 3ipfval 21556 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4140adantl 481 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4239, 41oveq12d 7367 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦) − (𝑧 , 𝑤)) = ((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤)))
4342fveq2d 6826 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4437, 43eqtrd 2764 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4544breq1d 5102 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟 ↔ (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
4631, 45imbi12d 344 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
47462ralbidva 3191 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4847rexbidv 3153 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4948ralbidv 3152 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
5022, 49mpbird 257 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
5150ralrimivva 3172 . . 3 (𝑊 ∈ ℂPreHil → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
52 cphngp 25071 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
53 ngpms 24486 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5452, 53syl 17 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp)
55 msxms 24340 . . . . . 6 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5654, 55syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp)
57 eqid 2729 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
582, 57xmsxmet 24342 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
5956, 58syl 17 . . . 4 (𝑊 ∈ ℂPreHil → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
60 cnxmet 24658 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
6160a1i 11 . . . 4 (𝑊 ∈ ℂPreHil → (abs ∘ − ) ∈ (∞Met‘ℂ))
62 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
63 ipcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6463cnfldtopn 24667 . . . . 5 𝐾 = (MetOpen‘(abs ∘ − ))
6562, 62, 64txmetcn 24434 . . . 4 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6659, 59, 61, 65syl3anc 1373 . . 3 (𝑊 ∈ ℂPreHil → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6711, 51, 66mpbir2and 713 . 2 (𝑊 ∈ ℂPreHil → , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
68 ipcn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6968, 2, 57mstopn 24338 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7054, 69syl 17 . . . 4 (𝑊 ∈ ℂPreHil → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7170, 70oveq12d 7367 . . 3 (𝑊 ∈ ℂPreHil → (𝐽 ×t 𝐽) = ((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7271oveq1d 7364 . 2 (𝑊 ∈ ℂPreHil → ((𝐽 ×t 𝐽) Cn 𝐾) = (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
7367, 72eleqtrrd 2831 1 (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092   × cxp 5617  cres 5621  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   < clt 11149  cmin 11347   / cdiv 11777  2c2 12183  +crp 12893  abscabs 15141  Basecbs 17120  Scalarcsca 17164  ·𝑖cip 17166  distcds 17170  TopOpenctopn 17325  ∞Metcxmet 21246  MetOpencmopn 21251  fldccnfld 21261  PreHilcphl 21531  ·ifcipf 21532   Cn ccn 23109   ×t ctx 23445  ∞MetSpcxms 24203  MetSpcms 24204  normcnm 24462  NrmGrpcngp 24463  ℂModcclm 24960  ℂPreHilccph 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-staf 20724  df-srng 20725  df-lmod 20765  df-lmhm 20926  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-phl 21533  df-ipf 21534  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-tng 24470  df-nlm 24472  df-clm 24961  df-cph 25066  df-tcph 25067
This theorem is referenced by:  cnmpt1ip  25145  cnmpt2ip  25146
  Copyright terms: Public domain W3C validator