MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcn Structured version   Visualization version   GIF version

Theorem ipcn 25179
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.f , = (·if𝑊)
ipcn.j 𝐽 = (TopOpen‘𝑊)
ipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipcn (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem ipcn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 25104 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 ipcn.f . . . . . 6 , = (·if𝑊)
4 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
62, 3, 4, 5phlipf 21594 . . . . 5 (𝑊 ∈ PreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
71, 6syl 17 . . . 4 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
8 cphclm 25122 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
94, 5clmsscn 25012 . . . . 5 (𝑊 ∈ ℂMod → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
108, 9syl 17 . . . 4 (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
117, 10fssd 6687 . . 3 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
12 eqid 2729 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
13 eqid 2729 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
14 eqid 2729 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
15 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))
16 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))))
17 simpll 766 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ ℂPreHil)
18 simplrl 776 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝑊))
19 simplrr 777 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
20 simpr 484 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
212, 12, 13, 14, 15, 16, 17, 18, 19, 20ipcnlem1 25178 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
2221ralrimiva 3125 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
23 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
24 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
2523, 24ovresd 7536 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) = (𝑥(dist‘𝑊)𝑧))
2625breq1d 5112 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝑊)𝑧) < 𝑠))
27 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
28 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2927, 28ovresd 7536 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
3029breq1d 5112 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
3126, 30anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
3211ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
3332, 23, 27fovcdmd 7541 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) ∈ ℂ)
3432, 24, 28fovcdmd 7541 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) ∈ ℂ)
35 eqid 2729 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
3635cnmetdval 24691 . . . . . . . . . . . 12 (((𝑥 , 𝑦) ∈ ℂ ∧ (𝑧 , 𝑤) ∈ ℂ) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
3733, 34, 36syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
382, 12, 3ipfval 21591 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
3923, 27, 38syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
402, 12, 3ipfval 21591 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4140adantl 481 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4239, 41oveq12d 7387 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦) − (𝑧 , 𝑤)) = ((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤)))
4342fveq2d 6844 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4437, 43eqtrd 2764 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4544breq1d 5112 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟 ↔ (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
4631, 45imbi12d 344 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
47462ralbidva 3197 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4847rexbidv 3157 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4948ralbidv 3156 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
5022, 49mpbird 257 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
5150ralrimivva 3178 . . 3 (𝑊 ∈ ℂPreHil → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
52 cphngp 25106 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
53 ngpms 24521 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5452, 53syl 17 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp)
55 msxms 24375 . . . . . 6 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5654, 55syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp)
57 eqid 2729 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
582, 57xmsxmet 24377 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
5956, 58syl 17 . . . 4 (𝑊 ∈ ℂPreHil → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
60 cnxmet 24693 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
6160a1i 11 . . . 4 (𝑊 ∈ ℂPreHil → (abs ∘ − ) ∈ (∞Met‘ℂ))
62 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
63 ipcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6463cnfldtopn 24702 . . . . 5 𝐾 = (MetOpen‘(abs ∘ − ))
6562, 62, 64txmetcn 24469 . . . 4 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6659, 59, 61, 65syl3anc 1373 . . 3 (𝑊 ∈ ℂPreHil → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6711, 51, 66mpbir2and 713 . 2 (𝑊 ∈ ℂPreHil → , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
68 ipcn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6968, 2, 57mstopn 24373 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7054, 69syl 17 . . . 4 (𝑊 ∈ ℂPreHil → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7170, 70oveq12d 7387 . . 3 (𝑊 ∈ ℂPreHil → (𝐽 ×t 𝐽) = ((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7271oveq1d 7384 . 2 (𝑊 ∈ ℂPreHil → ((𝐽 ×t 𝐽) Cn 𝐾) = (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
7367, 72eleqtrrd 2831 1 (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102   × cxp 5629  cres 5633  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   < clt 11184  cmin 11381   / cdiv 11811  2c2 12217  +crp 12927  abscabs 15176  Basecbs 17155  Scalarcsca 17199  ·𝑖cip 17201  distcds 17205  TopOpenctopn 17360  ∞Metcxmet 21281  MetOpencmopn 21286  fldccnfld 21296  PreHilcphl 21566  ·ifcipf 21567   Cn ccn 23144   ×t ctx 23480  ∞MetSpcxms 24238  MetSpcms 24239  normcnm 24497  NrmGrpcngp 24498  ℂModcclm 24995  ℂPreHilccph 25099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-staf 20759  df-srng 20760  df-lmod 20800  df-lmhm 20961  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-phl 21568  df-ipf 21569  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-cnp 23148  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-tng 24505  df-nlm 24507  df-clm 24996  df-cph 25101  df-tcph 25102
This theorem is referenced by:  cnmpt1ip  25180  cnmpt2ip  25181
  Copyright terms: Public domain W3C validator