Step | Hyp | Ref
| Expression |
1 | | cphphl 24240 |
. . . . 5
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
PreHil) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑊) =
(Base‘𝑊) |
3 | | ipcn.f |
. . . . . 6
⊢ , =
(·if‘𝑊) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
6 | 2, 3, 4, 5 | phlipf 20769 |
. . . . 5
⊢ (𝑊 ∈ PreHil → ,
:((Base‘𝑊) ×
(Base‘𝑊))⟶(Base‘(Scalar‘𝑊))) |
7 | 1, 6 | syl 17 |
. . . 4
⊢ (𝑊 ∈ ℂPreHil →
,
:((Base‘𝑊) ×
(Base‘𝑊))⟶(Base‘(Scalar‘𝑊))) |
8 | | cphclm 24258 |
. . . . 5
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
ℂMod) |
9 | 4, 5 | clmsscn 24148 |
. . . . 5
⊢ (𝑊 ∈ ℂMod →
(Base‘(Scalar‘𝑊)) ⊆ ℂ) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝑊 ∈ ℂPreHil →
(Base‘(Scalar‘𝑊)) ⊆ ℂ) |
11 | 7, 10 | fssd 6602 |
. . 3
⊢ (𝑊 ∈ ℂPreHil →
,
:((Base‘𝑊) ×
(Base‘𝑊))⟶ℂ) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(dist‘𝑊) =
(dist‘𝑊) |
14 | | eqid 2738 |
. . . . . . 7
⊢
(norm‘𝑊) =
(norm‘𝑊) |
15 | | eqid 2738 |
. . . . . . 7
⊢ ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) |
16 | | eqid 2738 |
. . . . . . 7
⊢ ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) |
17 | | simpll 763 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈
ℂPreHil) |
18 | | simplrl 773 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝑊)) |
19 | | simplrr 774 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊)) |
20 | | simpr 484 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
21 | 2, 12, 13, 14, 15, 16, 17, 18, 19, 20 | ipcnlem1 24314 |
. . . . . 6
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) →
∃𝑠 ∈
ℝ+ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟)) |
22 | 21 | ralrimiva 3107 |
. . . . 5
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟)) |
23 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
24 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
25 | 23, 24 | ovresd 7417 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) = (𝑥(dist‘𝑊)𝑧)) |
26 | 25 | breq1d 5080 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝑊)𝑧) < 𝑠)) |
27 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
28 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊)) |
29 | 27, 28 | ovresd 7417 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤)) |
30 | 29 | breq1d 5080 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠)) |
31 | 26, 30 | anbi12d 630 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠))) |
32 | 11 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ) |
33 | 32, 23, 27 | fovrnd 7422 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) ∈ ℂ) |
34 | 32, 24, 28 | fovrnd 7422 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) ∈ ℂ) |
35 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (abs
∘ − ) = (abs ∘ − ) |
36 | 35 | cnmetdval 23840 |
. . . . . . . . . . . 12
⊢ (((𝑥 , 𝑦) ∈ ℂ ∧ (𝑧 , 𝑤) ∈ ℂ) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤)))) |
37 | 33, 34, 36 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤)))) |
38 | 2, 12, 3 | ipfval 20766 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 , 𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
39 | 23, 27, 38 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
40 | 2, 12, 3 | ipfval 20766 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 , 𝑤) = (𝑧(·𝑖‘𝑊)𝑤)) |
41 | 40 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) = (𝑧(·𝑖‘𝑊)𝑤)) |
42 | 39, 41 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦) − (𝑧 , 𝑤)) = ((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) |
43 | 42 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))) = (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤)))) |
44 | 37, 43 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤)))) |
45 | 44 | breq1d 5080 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟 ↔ (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟)) |
46 | 31, 45 | imbi12d 344 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟))) |
47 | 46 | 2ralbidva 3121 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟))) |
48 | 47 | rexbidv 3225 |
. . . . . 6
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟))) |
49 | 48 | ralbidv 3120 |
. . . . 5
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖‘𝑊)𝑦) − (𝑧(·𝑖‘𝑊)𝑤))) < 𝑟))) |
50 | 22, 49 | mpbird 256 |
. . . 4
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟)) |
51 | 50 | ralrimivva 3114 |
. . 3
⊢ (𝑊 ∈ ℂPreHil →
∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟)) |
52 | | cphngp 24242 |
. . . . . . 7
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmGrp) |
53 | | ngpms 23662 |
. . . . . . 7
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp) |
54 | 52, 53 | syl 17 |
. . . . . 6
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
MetSp) |
55 | | msxms 23515 |
. . . . . 6
⊢ (𝑊 ∈ MetSp → 𝑊 ∈
∞MetSp) |
56 | 54, 55 | syl 17 |
. . . . 5
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
∞MetSp) |
57 | | eqid 2738 |
. . . . . 6
⊢
((dist‘𝑊)
↾ ((Base‘𝑊)
× (Base‘𝑊))) =
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) |
58 | 2, 57 | xmsxmet 23517 |
. . . . 5
⊢ (𝑊 ∈ ∞MetSp →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊))) |
59 | 56, 58 | syl 17 |
. . . 4
⊢ (𝑊 ∈ ℂPreHil →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊))) |
60 | | cnxmet 23842 |
. . . . 5
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
61 | 60 | a1i 11 |
. . . 4
⊢ (𝑊 ∈ ℂPreHil →
(abs ∘ − ) ∈ (∞Met‘ℂ)) |
62 | | eqid 2738 |
. . . . 5
⊢
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
63 | | ipcn.k |
. . . . . 6
⊢ 𝐾 =
(TopOpen‘ℂfld) |
64 | 63 | cnfldtopn 23851 |
. . . . 5
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
65 | 62, 62, 64 | txmetcn 23610 |
. . . 4
⊢
((((dist‘𝑊)
↾ ((Base‘𝑊)
× (Base‘𝑊)))
∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊)) ∧ (abs ∘ − ) ∈
(∞Met‘ℂ)) → ( , ∈
(((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧
∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟)))) |
66 | 59, 59, 61, 65 | syl3anc 1369 |
. . 3
⊢ (𝑊 ∈ ℂPreHil → (
, ∈
(((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧
∀𝑥 ∈
(Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟)))) |
67 | 11, 51, 66 | mpbir2and 709 |
. 2
⊢ (𝑊 ∈ ℂPreHil →
, ∈
(((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾)) |
68 | | ipcn.j |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝑊) |
69 | 68, 2, 57 | mstopn 23513 |
. . . . 5
⊢ (𝑊 ∈ MetSp → 𝐽 =
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
70 | 54, 69 | syl 17 |
. . . 4
⊢ (𝑊 ∈ ℂPreHil →
𝐽 =
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
71 | 70, 70 | oveq12d 7273 |
. . 3
⊢ (𝑊 ∈ ℂPreHil →
(𝐽 ×t
𝐽) =
((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))) |
72 | 71 | oveq1d 7270 |
. 2
⊢ (𝑊 ∈ ℂPreHil →
((𝐽 ×t
𝐽) Cn 𝐾) = (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾)) |
73 | 67, 72 | eleqtrrd 2842 |
1
⊢ (𝑊 ∈ ℂPreHil →
, ∈
((𝐽 ×t
𝐽) Cn 𝐾)) |