MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcn Structured version   Visualization version   GIF version

Theorem ipcn 25146
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.f , = (·if𝑊)
ipcn.j 𝐽 = (TopOpen‘𝑊)
ipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipcn (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem ipcn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 25071 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
3 ipcn.f . . . . . 6 , = (·if𝑊)
4 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
62, 3, 4, 5phlipf 21561 . . . . 5 (𝑊 ∈ PreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
71, 6syl 17 . . . 4 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶(Base‘(Scalar‘𝑊)))
8 cphclm 25089 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
94, 5clmsscn 24979 . . . . 5 (𝑊 ∈ ℂMod → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
108, 9syl 17 . . . 4 (𝑊 ∈ ℂPreHil → (Base‘(Scalar‘𝑊)) ⊆ ℂ)
117, 10fssd 6705 . . 3 (𝑊 ∈ ℂPreHil → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
12 eqid 2729 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
13 eqid 2729 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
14 eqid 2729 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
15 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))
16 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝑊)‘𝑥) + 1))))
17 simpll 766 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ ℂPreHil)
18 simplrl 776 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝑊))
19 simplrr 777 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
20 simpr 484 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
212, 12, 13, 14, 15, 16, 17, 18, 19, 20ipcnlem1 25145 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
2221ralrimiva 3125 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
23 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
24 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
2523, 24ovresd 7556 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) = (𝑥(dist‘𝑊)𝑧))
2625breq1d 5117 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝑊)𝑧) < 𝑠))
27 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
28 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2927, 28ovresd 7556 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
3029breq1d 5117 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
3126, 30anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
3211ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ)
3332, 23, 27fovcdmd 7561 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) ∈ ℂ)
3432, 24, 28fovcdmd 7561 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) ∈ ℂ)
35 eqid 2729 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
3635cnmetdval 24658 . . . . . . . . . . . 12 (((𝑥 , 𝑦) ∈ ℂ ∧ (𝑧 , 𝑤) ∈ ℂ) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
3733, 34, 36syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))))
382, 12, 3ipfval 21558 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
3923, 27, 38syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 , 𝑦) = (𝑥(·𝑖𝑊)𝑦))
402, 12, 3ipfval 21558 . . . . . . . . . . . . . 14 ((𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4140adantl 481 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 , 𝑤) = (𝑧(·𝑖𝑊)𝑤))
4239, 41oveq12d 7405 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦) − (𝑧 , 𝑤)) = ((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤)))
4342fveq2d 6862 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (abs‘((𝑥 , 𝑦) − (𝑧 , 𝑤))) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4437, 43eqtrd 2764 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) = (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))))
4544breq1d 5117 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟 ↔ (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟))
4631, 45imbi12d 344 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
47462ralbidva 3199 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4847rexbidv 3157 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
4948ralbidv 3156 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝑊)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → (abs‘((𝑥(·𝑖𝑊)𝑦) − (𝑧(·𝑖𝑊)𝑤))) < 𝑟)))
5022, 49mpbird 257 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
5150ralrimivva 3180 . . 3 (𝑊 ∈ ℂPreHil → ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))
52 cphngp 25073 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
53 ngpms 24488 . . . . . . 7 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5452, 53syl 17 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp)
55 msxms 24342 . . . . . 6 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5654, 55syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp)
57 eqid 2729 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
582, 57xmsxmet 24344 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
5956, 58syl 17 . . . 4 (𝑊 ∈ ℂPreHil → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
60 cnxmet 24660 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
6160a1i 11 . . . 4 (𝑊 ∈ ℂPreHil → (abs ∘ − ) ∈ (∞Met‘ℂ))
62 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
63 ipcn.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6463cnfldtopn 24669 . . . . 5 𝐾 = (MetOpen‘(abs ∘ − ))
6562, 62, 64txmetcn 24436 . . . 4 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6659, 59, 61, 65syl3anc 1373 . . 3 (𝑊 ∈ ℂPreHil → ( , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾) ↔ ( , :((Base‘𝑊) × (Base‘𝑊))⟶ℂ ∧ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 , 𝑦)(abs ∘ − )(𝑧 , 𝑤)) < 𝑟))))
6711, 51, 66mpbir2and 713 . 2 (𝑊 ∈ ℂPreHil → , ∈ (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
68 ipcn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
6968, 2, 57mstopn 24340 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7054, 69syl 17 . . . 4 (𝑊 ∈ ℂPreHil → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7170, 70oveq12d 7405 . . 3 (𝑊 ∈ ℂPreHil → (𝐽 ×t 𝐽) = ((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7271oveq1d 7402 . 2 (𝑊 ∈ ℂPreHil → ((𝐽 ×t 𝐽) Cn 𝐾) = (((MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn 𝐾))
7367, 72eleqtrrd 2831 1 (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   × cxp 5636  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   < clt 11208  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  abscabs 15200  Basecbs 17179  Scalarcsca 17223  ·𝑖cip 17225  distcds 17229  TopOpenctopn 17384  ∞Metcxmet 21249  MetOpencmopn 21254  fldccnfld 21264  PreHilcphl 21533  ·ifcipf 21534   Cn ccn 23111   ×t ctx 23447  ∞MetSpcxms 24205  MetSpcms 24206  normcnm 24464  NrmGrpcngp 24465  ℂModcclm 24962  ℂPreHilccph 25066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-staf 20748  df-srng 20749  df-lmod 20768  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-phl 21535  df-ipf 21536  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-tng 24472  df-nlm 24474  df-clm 24963  df-cph 25068  df-tcph 25069
This theorem is referenced by:  cnmpt1ip  25147  cnmpt2ip  25148
  Copyright terms: Public domain W3C validator