MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmcn Structured version   Visualization version   GIF version

Theorem nghmcn 24640
Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nghmcn.j 𝐽 = (TopOpen‘𝑆)
nghmcn.k 𝐾 = (TopOpen‘𝑇)
Assertion
Ref Expression
nghmcn (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nghmcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nghmghm 24629 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 eqid 2730 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2730 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 19159 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
51, 4syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 simprr 772 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
7 eqid 2730 . . . . . . . . 9 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
87nghmcl 24622 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
9 nghmrcl1 24627 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
10 nghmrcl2 24628 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
117nmoge0 24616 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
129, 10, 1, 11syl3anc 1373 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
138, 12ge0p1rpd 13032 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
1413adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
156, 14rpdivcld 13019 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+)
16 ngpms 24495 . . . . . . . . . . . 12 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
179, 16syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ MetSp)
1817ad2antrr 726 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ MetSp)
19 simplrl 776 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
20 simpr 484 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
21 eqid 2730 . . . . . . . . . . 11 (dist‘𝑆) = (dist‘𝑆)
222, 21mscl 24356 . . . . . . . . . 10 ((𝑆 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
2318, 19, 20, 22syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
246adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ+)
2524rpred 13002 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ)
2613ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
2723, 25, 26ltmuldiv2d 13050 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
28 ngpms 24495 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2910, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ MetSp)
3029ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ MetSp)
315ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3231, 19ffvelcdmd 7060 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑥) ∈ (Base‘𝑇))
3331, 20ffvelcdmd 7060 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
34 eqid 2730 . . . . . . . . . . . 12 (dist‘𝑇) = (dist‘𝑇)
353, 34mscl 24356 . . . . . . . . . . 11 ((𝑇 ∈ MetSp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
3630, 32, 33, 35syl3anc 1373 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
378ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
3837, 23remulcld 11211 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
3926rpred 13002 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ)
4039, 23remulcld 11211 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
417, 2, 21, 34nmods 24639 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
42413expa 1118 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
4342adantlrr 721 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
44 msxms 24349 . . . . . . . . . . . . 13 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
4518, 44syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ ∞MetSp)
462, 21xmsge0 24358 . . . . . . . . . . . 12 ((𝑆 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4745, 19, 20, 46syl3anc 1373 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4837lep1d 12121 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (((𝑆 normOp 𝑇)‘𝐹) + 1))
4937, 39, 23, 47, 48lemul1ad 12129 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
5036, 38, 40, 43, 49letrd 11338 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
51 lelttr 11271 . . . . . . . . . 10 ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5236, 40, 25, 51syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5350, 52mpand 695 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5427, 53sylbird 260 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5519, 20ovresd 7559 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) = (𝑥(dist‘𝑆)𝑦))
5655breq1d 5120 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
5732, 33ovresd 7559 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) = ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)))
5857breq1d 5120 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟 ↔ ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5954, 56, 583imtr4d 294 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6059ralrimiva 3126 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
61 breq2 5114 . . . . . 6 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 ↔ (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
6261rspceaimv 3597 . . . . 5 (((𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+ ∧ ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6315, 60, 62syl2anc 584 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6463ralrimivva 3181 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
65 eqid 2730 . . . . . 6 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
662, 65xmsxmet 24351 . . . . 5 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
6717, 44, 663syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
68 msxms 24349 . . . . 5 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
69 eqid 2730 . . . . . 6 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
703, 69xmsxmet 24351 . . . . 5 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
7129, 68, 703syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
72 eqid 2730 . . . . 5 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
73 eqid 2730 . . . . 5 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
7472, 73metcn 24438 . . . 4 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇))) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
7567, 71, 74syl2anc 584 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
765, 64, 75mpbir2and 713 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
77 nghmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
7877, 2, 65mstopn 24347 . . . 4 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
7917, 78syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
80 nghmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
8180, 3, 69mstopn 24347 . . . 4 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8229, 81syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8379, 82oveq12d 7408 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐽 Cn 𝐾) = ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
8476, 83eleqtrrd 2832 1 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110   × cxp 5639  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  +crp 12958  Basecbs 17186  distcds 17236  TopOpenctopn 17391   GrpHom cghm 19151  ∞Metcxmet 21256  MetOpencmopn 21261   Cn ccn 23118  ∞MetSpcxms 24212  MetSpcms 24213  NrmGrpcngp 24472   normOp cnmo 24600   NGHom cnghm 24601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nmo 24603  df-nghm 24604
This theorem is referenced by:  nmhmcn  25027
  Copyright terms: Public domain W3C validator