MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmcn Structured version   Visualization version   GIF version

Theorem nghmcn 23356
Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nghmcn.j 𝐽 = (TopOpen‘𝑆)
nghmcn.k 𝐾 = (TopOpen‘𝑇)
Assertion
Ref Expression
nghmcn (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nghmcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nghmghm 23345 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 eqid 2823 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2823 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 18364 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
51, 4syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 simprr 771 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
7 eqid 2823 . . . . . . . . 9 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
87nghmcl 23338 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
9 nghmrcl1 23343 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
10 nghmrcl2 23344 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
117nmoge0 23332 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
129, 10, 1, 11syl3anc 1367 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
138, 12ge0p1rpd 12464 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
1413adantr 483 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
156, 14rpdivcld 12451 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+)
16 ngpms 23211 . . . . . . . . . . . 12 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
179, 16syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ MetSp)
1817ad2antrr 724 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ MetSp)
19 simplrl 775 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
20 simpr 487 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
21 eqid 2823 . . . . . . . . . . 11 (dist‘𝑆) = (dist‘𝑆)
222, 21mscl 23073 . . . . . . . . . 10 ((𝑆 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
2318, 19, 20, 22syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
246adantr 483 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ+)
2524rpred 12434 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ)
2613ad2antrr 724 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
2723, 25, 26ltmuldiv2d 12482 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
28 ngpms 23211 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2910, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ MetSp)
3029ad2antrr 724 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ MetSp)
315ad2antrr 724 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3231, 19ffvelrnd 6854 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑥) ∈ (Base‘𝑇))
3331, 20ffvelrnd 6854 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
34 eqid 2823 . . . . . . . . . . . 12 (dist‘𝑇) = (dist‘𝑇)
353, 34mscl 23073 . . . . . . . . . . 11 ((𝑇 ∈ MetSp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
3630, 32, 33, 35syl3anc 1367 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
378ad2antrr 724 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
3837, 23remulcld 10673 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
3926rpred 12434 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ)
4039, 23remulcld 10673 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
417, 2, 21, 34nmods 23355 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
42413expa 1114 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
4342adantlrr 719 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
44 msxms 23066 . . . . . . . . . . . . 13 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
4518, 44syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ ∞MetSp)
462, 21xmsge0 23075 . . . . . . . . . . . 12 ((𝑆 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4745, 19, 20, 46syl3anc 1367 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4837lep1d 11573 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (((𝑆 normOp 𝑇)‘𝐹) + 1))
4937, 39, 23, 47, 48lemul1ad 11581 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
5036, 38, 40, 43, 49letrd 10799 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
51 lelttr 10733 . . . . . . . . . 10 ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5236, 40, 25, 51syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5350, 52mpand 693 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5427, 53sylbird 262 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5519, 20ovresd 7317 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) = (𝑥(dist‘𝑆)𝑦))
5655breq1d 5078 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
5732, 33ovresd 7317 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) = ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)))
5857breq1d 5078 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟 ↔ ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5954, 56, 583imtr4d 296 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6059ralrimiva 3184 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
61 breq2 5072 . . . . . 6 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 ↔ (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
6261rspceaimv 3630 . . . . 5 (((𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+ ∧ ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6315, 60, 62syl2anc 586 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6463ralrimivva 3193 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
65 eqid 2823 . . . . . 6 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
662, 65xmsxmet 23068 . . . . 5 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
6717, 44, 663syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
68 msxms 23066 . . . . 5 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
69 eqid 2823 . . . . . 6 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
703, 69xmsxmet 23068 . . . . 5 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
7129, 68, 703syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
72 eqid 2823 . . . . 5 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
73 eqid 2823 . . . . 5 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
7472, 73metcn 23155 . . . 4 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇))) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
7567, 71, 74syl2anc 586 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
765, 64, 75mpbir2and 711 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
77 nghmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
7877, 2, 65mstopn 23064 . . . 4 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
7917, 78syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
80 nghmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
8180, 3, 69mstopn 23064 . . . 4 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8229, 81syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8379, 82oveq12d 7176 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐽 Cn 𝐾) = ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
8476, 83eleqtrrd 2918 1 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068   × cxp 5555  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  +crp 12392  Basecbs 16485  distcds 16576  TopOpenctopn 16697   GrpHom cghm 18357  ∞Metcxmet 20532  MetOpencmopn 20537   Cn ccn 21834  ∞MetSpcxms 22929  MetSpcms 22930  NrmGrpcngp 23189   normOp cnmo 23316   NGHom cnghm 23317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-0g 16717  df-topgen 16719  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-ghm 18358  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cn 21837  df-cnp 21838  df-xms 22932  df-ms 22933  df-nm 23194  df-ngp 23195  df-nmo 23319  df-nghm 23320
This theorem is referenced by:  nmhmcn  23726
  Copyright terms: Public domain W3C validator