MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmcn Structured version   Visualization version   GIF version

Theorem nghmcn 23909
Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nghmcn.j 𝐽 = (TopOpen‘𝑆)
nghmcn.k 𝐾 = (TopOpen‘𝑇)
Assertion
Ref Expression
nghmcn (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nghmcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nghmghm 23898 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2738 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 18838 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
51, 4syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
6 simprr 770 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
7 eqid 2738 . . . . . . . . 9 (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇)
87nghmcl 23891 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
9 nghmrcl1 23896 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
10 nghmrcl2 23897 . . . . . . . . 9 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
117nmoge0 23885 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
129, 10, 1, 11syl3anc 1370 . . . . . . . 8 (𝐹 ∈ (𝑆 NGHom 𝑇) → 0 ≤ ((𝑆 normOp 𝑇)‘𝐹))
138, 12ge0p1rpd 12802 . . . . . . 7 (𝐹 ∈ (𝑆 NGHom 𝑇) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
1413adantr 481 . . . . . 6 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
156, 14rpdivcld 12789 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+)
16 ngpms 23756 . . . . . . . . . . . 12 (𝑆 ∈ NrmGrp → 𝑆 ∈ MetSp)
179, 16syl 17 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ MetSp)
1817ad2antrr 723 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ MetSp)
19 simplrl 774 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
20 simpr 485 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
21 eqid 2738 . . . . . . . . . . 11 (dist‘𝑆) = (dist‘𝑆)
222, 21mscl 23614 . . . . . . . . . 10 ((𝑆 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
2318, 19, 20, 22syl3anc 1370 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(dist‘𝑆)𝑦) ∈ ℝ)
246adantr 481 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ+)
2524rpred 12772 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑟 ∈ ℝ)
2613ad2antrr 723 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ+)
2723, 25, 26ltmuldiv2d 12820 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
28 ngpms 23756 . . . . . . . . . . . . 13 (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp)
2910, 28syl 17 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ MetSp)
3029ad2antrr 723 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑇 ∈ MetSp)
315ad2antrr 723 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3231, 19ffvelrnd 6962 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑥) ∈ (Base‘𝑇))
3331, 20ffvelrnd 6962 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹𝑦) ∈ (Base‘𝑇))
34 eqid 2738 . . . . . . . . . . . 12 (dist‘𝑇) = (dist‘𝑇)
353, 34mscl 23614 . . . . . . . . . . 11 ((𝑇 ∈ MetSp ∧ (𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
3630, 32, 33, 35syl3anc 1370 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ)
378ad2antrr 723 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ∈ ℝ)
3837, 23remulcld 11005 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
3926rpred 12772 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) + 1) ∈ ℝ)
4039, 23remulcld 11005 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ)
417, 2, 21, 34nmods 23908 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
42413expa 1117 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
4342adantlrr 718 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)))
44 msxms 23607 . . . . . . . . . . . . 13 (𝑆 ∈ MetSp → 𝑆 ∈ ∞MetSp)
4518, 44syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑆 ∈ ∞MetSp)
462, 21xmsge0 23616 . . . . . . . . . . . 12 ((𝑆 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4745, 19, 20, 46syl3anc 1370 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → 0 ≤ (𝑥(dist‘𝑆)𝑦))
4837lep1d 11906 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑆 normOp 𝑇)‘𝐹) ≤ (((𝑆 normOp 𝑇)‘𝐹) + 1))
4937, 39, 23, 47, 48lemul1ad 11914 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑆 normOp 𝑇)‘𝐹) · (𝑥(dist‘𝑆)𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
5036, 38, 40, 43, 49letrd 11132 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)))
51 lelttr 11065 . . . . . . . . . 10 ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ∈ ℝ ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5236, 40, 25, 51syl3anc 1370 . . . . . . . . 9 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) ≤ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) ∧ ((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5350, 52mpand 692 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((((𝑆 normOp 𝑇)‘𝐹) + 1) · (𝑥(dist‘𝑆)𝑦)) < 𝑟 → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5427, 53sylbird 259 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5519, 20ovresd 7439 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) = (𝑥(dist‘𝑆)𝑦))
5655breq1d 5084 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ↔ (𝑥(dist‘𝑆)𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
5732, 33ovresd 7439 . . . . . . . 8 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) = ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)))
5857breq1d 5084 . . . . . . 7 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟 ↔ ((𝐹𝑥)(dist‘𝑇)(𝐹𝑦)) < 𝑟))
5954, 56, 583imtr4d 294 . . . . . 6 (((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6059ralrimiva 3103 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
61 breq2 5078 . . . . . 6 (𝑠 = (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 ↔ (𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1))))
6261rspceaimv 3565 . . . . 5 (((𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) ∈ ℝ+ ∧ ∀𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < (𝑟 / (((𝑆 normOp 𝑇)‘𝐹) + 1)) → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6315, 60, 62syl2anc 584 . . . 4 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
6463ralrimivva 3123 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))
65 eqid 2738 . . . . . 6 ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) = ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))
662, 65xmsxmet 23609 . . . . 5 (𝑆 ∈ ∞MetSp → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
6717, 44, 663syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)))
68 msxms 23607 . . . . 5 (𝑇 ∈ MetSp → 𝑇 ∈ ∞MetSp)
69 eqid 2738 . . . . . 6 ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))
703, 69xmsxmet 23609 . . . . 5 (𝑇 ∈ ∞MetSp → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
7129, 68, 703syl 18 . . . 4 (𝐹 ∈ (𝑆 NGHom 𝑇) → ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇)))
72 eqid 2738 . . . . 5 (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))))
73 eqid 2738 . . . . 5 (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))
7472, 73metcn 23699 . . . 4 ((((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆))) ∈ (∞Met‘(Base‘𝑆)) ∧ ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (∞Met‘(Base‘𝑇))) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
7567, 71, 74syl2anc 584 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))) ↔ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦 ∈ (Base‘𝑆)((𝑥((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))𝑦) < 𝑠 → ((𝐹𝑥)((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))(𝐹𝑦)) < 𝑟))))
765, 64, 75mpbir2and 710 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
77 nghmcn.j . . . . 5 𝐽 = (TopOpen‘𝑆)
7877, 2, 65mstopn 23605 . . . 4 (𝑆 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
7917, 78syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐽 = (MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))))
80 nghmcn.k . . . . 5 𝐾 = (TopOpen‘𝑇)
8180, 3, 69mstopn 23605 . . . 4 (𝑇 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8229, 81syl 17 . . 3 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐾 = (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇)))))
8379, 82oveq12d 7293 . 2 (𝐹 ∈ (𝑆 NGHom 𝑇) → (𝐽 Cn 𝐾) = ((MetOpen‘((dist‘𝑆) ↾ ((Base‘𝑆) × (Base‘𝑆)))) Cn (MetOpen‘((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))))))
8476, 83eleqtrrd 2842 1 (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074   × cxp 5587  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  +crp 12730  Basecbs 16912  distcds 16971  TopOpenctopn 17132   GrpHom cghm 18831  ∞Metcxmet 20582  MetOpencmopn 20587   Cn ccn 22375  ∞MetSpcxms 23470  MetSpcms 23471  NrmGrpcngp 23733   normOp cnmo 23869   NGHom cnghm 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-ghm 18832  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nmo 23872  df-nghm 23873
This theorem is referenced by:  nmhmcn  24283
  Copyright terms: Public domain W3C validator