Step | Hyp | Ref
| Expression |
1 | | nghmghm 24242 |
. . . 4
β’ (πΉ β (π NGHom π) β πΉ β (π GrpHom π)) |
2 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | 2, 3 | ghmf 19090 |
. . . 4
β’ (πΉ β (π GrpHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
5 | 1, 4 | syl 17 |
. . 3
β’ (πΉ β (π NGHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
6 | | simprr 771 |
. . . . . 6
β’ ((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β π β
β+) |
7 | | eqid 2732 |
. . . . . . . . 9
β’ (π normOp π) = (π normOp π) |
8 | 7 | nghmcl 24235 |
. . . . . . . 8
β’ (πΉ β (π NGHom π) β ((π normOp π)βπΉ) β β) |
9 | | nghmrcl1 24240 |
. . . . . . . . 9
β’ (πΉ β (π NGHom π) β π β NrmGrp) |
10 | | nghmrcl2 24241 |
. . . . . . . . 9
β’ (πΉ β (π NGHom π) β π β NrmGrp) |
11 | 7 | nmoge0 24229 |
. . . . . . . . 9
β’ ((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β 0 β€ ((π normOp π)βπΉ)) |
12 | 9, 10, 1, 11 | syl3anc 1371 |
. . . . . . . 8
β’ (πΉ β (π NGHom π) β 0 β€ ((π normOp π)βπΉ)) |
13 | 8, 12 | ge0p1rpd 13042 |
. . . . . . 7
β’ (πΉ β (π NGHom π) β (((π normOp π)βπΉ) + 1) β
β+) |
14 | 13 | adantr 481 |
. . . . . 6
β’ ((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β (((π normOp π)βπΉ) + 1) β
β+) |
15 | 6, 14 | rpdivcld 13029 |
. . . . 5
β’ ((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β (π / (((π normOp π)βπΉ) + 1)) β
β+) |
16 | | ngpms 24100 |
. . . . . . . . . . . 12
β’ (π β NrmGrp β π β MetSp) |
17 | 9, 16 | syl 17 |
. . . . . . . . . . 11
β’ (πΉ β (π NGHom π) β π β MetSp) |
18 | 17 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π β MetSp) |
19 | | simplrl 775 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π₯ β (Baseβπ)) |
20 | | simpr 485 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π¦ β (Baseβπ)) |
21 | | eqid 2732 |
. . . . . . . . . . 11
β’
(distβπ) =
(distβπ) |
22 | 2, 21 | mscl 23958 |
. . . . . . . . . 10
β’ ((π β MetSp β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(distβπ)π¦) β β) |
23 | 18, 19, 20, 22 | syl3anc 1371 |
. . . . . . . . 9
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (π₯(distβπ)π¦) β β) |
24 | 6 | adantr 481 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π β β+) |
25 | 24 | rpred 13012 |
. . . . . . . . 9
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π β β) |
26 | 13 | ad2antrr 724 |
. . . . . . . . 9
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((π normOp π)βπΉ) + 1) β
β+) |
27 | 23, 25, 26 | ltmuldiv2d 13060 |
. . . . . . . 8
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) < π β (π₯(distβπ)π¦) < (π / (((π normOp π)βπΉ) + 1)))) |
28 | | ngpms 24100 |
. . . . . . . . . . . . 13
β’ (π β NrmGrp β π β MetSp) |
29 | 10, 28 | syl 17 |
. . . . . . . . . . . 12
β’ (πΉ β (π NGHom π) β π β MetSp) |
30 | 29 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π β MetSp) |
31 | 5 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
32 | 31, 19 | ffvelcdmd 7084 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (πΉβπ₯) β (Baseβπ)) |
33 | 31, 20 | ffvelcdmd 7084 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (πΉβπ¦) β (Baseβπ)) |
34 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(distβπ) =
(distβπ) |
35 | 3, 34 | mscl 23958 |
. . . . . . . . . . 11
β’ ((π β MetSp β§ (πΉβπ₯) β (Baseβπ) β§ (πΉβπ¦) β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β β) |
36 | 30, 32, 33, 35 | syl3anc 1371 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β β) |
37 | 8 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((π normOp π)βπΉ) β β) |
38 | 37, 23 | remulcld 11240 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((π normOp π)βπΉ) Β· (π₯(distβπ)π¦)) β β) |
39 | 26 | rpred 13012 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((π normOp π)βπΉ) + 1) β β) |
40 | 39, 23 | remulcld 11240 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) β β) |
41 | 7, 2, 21, 34 | nmods 24252 |
. . . . . . . . . . . 12
β’ ((πΉ β (π NGHom π) β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ (((π normOp π)βπΉ) Β· (π₯(distβπ)π¦))) |
42 | 41 | 3expa 1118 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ π₯ β (Baseβπ)) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ (((π normOp π)βπΉ) Β· (π₯(distβπ)π¦))) |
43 | 42 | adantlrr 719 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ (((π normOp π)βπΉ) Β· (π₯(distβπ)π¦))) |
44 | | msxms 23951 |
. . . . . . . . . . . . 13
β’ (π β MetSp β π β
βMetSp) |
45 | 18, 44 | syl 17 |
. . . . . . . . . . . 12
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β π β βMetSp) |
46 | 2, 21 | xmsge0 23960 |
. . . . . . . . . . . 12
β’ ((π β βMetSp β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β 0 β€ (π₯(distβπ)π¦)) |
47 | 45, 19, 20, 46 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β 0 β€ (π₯(distβπ)π¦)) |
48 | 37 | lep1d 12141 |
. . . . . . . . . . 11
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((π normOp π)βπΉ) β€ (((π normOp π)βπΉ) + 1)) |
49 | 37, 39, 23, 47, 48 | lemul1ad 12149 |
. . . . . . . . . 10
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((π normOp π)βπΉ) Β· (π₯(distβπ)π¦)) β€ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦))) |
50 | 36, 38, 40, 43, 49 | letrd 11367 |
. . . . . . . . 9
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦))) |
51 | | lelttr 11300 |
. . . . . . . . . 10
β’ ((((πΉβπ₯)(distβπ)(πΉβπ¦)) β β β§ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) β β β§ π β β) β ((((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) β§ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) < π) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) < π)) |
52 | 36, 40, 25, 51 | syl3anc 1371 |
. . . . . . . . 9
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((((πΉβπ₯)(distβπ)(πΉβπ¦)) β€ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) β§ ((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) < π) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) < π)) |
53 | 50, 52 | mpand 693 |
. . . . . . . 8
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((((π normOp π)βπΉ) + 1) Β· (π₯(distβπ)π¦)) < π β ((πΉβπ₯)(distβπ)(πΉβπ¦)) < π)) |
54 | 27, 53 | sylbird 259 |
. . . . . . 7
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((π₯(distβπ)π¦) < (π / (((π normOp π)βπΉ) + 1)) β ((πΉβπ₯)(distβπ)(πΉβπ¦)) < π)) |
55 | 19, 20 | ovresd 7570 |
. . . . . . . 8
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) = (π₯(distβπ)π¦)) |
56 | 55 | breq1d 5157 |
. . . . . . 7
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < (π / (((π normOp π)βπΉ) + 1)) β (π₯(distβπ)π¦) < (π / (((π normOp π)βπΉ) + 1)))) |
57 | 32, 33 | ovresd 7570 |
. . . . . . . 8
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) = ((πΉβπ₯)(distβπ)(πΉβπ¦))) |
58 | 57 | breq1d 5157 |
. . . . . . 7
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β (((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π β ((πΉβπ₯)(distβπ)(πΉβπ¦)) < π)) |
59 | 54, 56, 58 | 3imtr4d 293 |
. . . . . 6
β’ (((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β§ π¦ β (Baseβπ)) β ((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < (π / (((π normOp π)βπΉ) + 1)) β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) |
60 | 59 | ralrimiva 3146 |
. . . . 5
β’ ((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β
βπ¦ β
(Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < (π / (((π normOp π)βπΉ) + 1)) β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) |
61 | | breq2 5151 |
. . . . . 6
β’ (π = (π / (((π normOp π)βπΉ) + 1)) β ((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β (π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < (π / (((π normOp π)βπΉ) + 1)))) |
62 | 61 | rspceaimv 3616 |
. . . . 5
β’ (((π / (((π normOp π)βπΉ) + 1)) β β+ β§
βπ¦ β
(Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < (π / (((π normOp π)βπΉ) + 1)) β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) β βπ β β+ βπ¦ β (Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) |
63 | 15, 60, 62 | syl2anc 584 |
. . . 4
β’ ((πΉ β (π NGHom π) β§ (π₯ β (Baseβπ) β§ π β β+)) β
βπ β
β+ βπ¦ β (Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) |
64 | 63 | ralrimivva 3200 |
. . 3
β’ (πΉ β (π NGHom π) β βπ₯ β (Baseβπ)βπ β β+ βπ β β+
βπ¦ β
(Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)) |
65 | | eqid 2732 |
. . . . . 6
β’
((distβπ)
βΎ ((Baseβπ)
Γ (Baseβπ))) =
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) |
66 | 2, 65 | xmsxmet 23953 |
. . . . 5
β’ (π β βMetSp β
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) β
(βMetβ(Baseβπ))) |
67 | 17, 44, 66 | 3syl 18 |
. . . 4
β’ (πΉ β (π NGHom π) β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β
(βMetβ(Baseβπ))) |
68 | | msxms 23951 |
. . . . 5
β’ (π β MetSp β π β
βMetSp) |
69 | | eqid 2732 |
. . . . . 6
β’
((distβπ)
βΎ ((Baseβπ)
Γ (Baseβπ))) =
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) |
70 | 3, 69 | xmsxmet 23953 |
. . . . 5
β’ (π β βMetSp β
((distβπ) βΎ
((Baseβπ) Γ
(Baseβπ))) β
(βMetβ(Baseβπ))) |
71 | 29, 68, 70 | 3syl 18 |
. . . 4
β’ (πΉ β (π NGHom π) β ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β
(βMetβ(Baseβπ))) |
72 | | eqid 2732 |
. . . . 5
β’
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) |
73 | | eqid 2732 |
. . . . 5
β’
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) |
74 | 72, 73 | metcn 24043 |
. . . 4
β’
((((distβπ)
βΎ ((Baseβπ)
Γ (Baseβπ)))
β (βMetβ(Baseβπ)) β§ ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))) β
(βMetβ(Baseβπ))) β (πΉ β ((MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) Cn
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) β (πΉ:(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ β β+ βπ β β+
βπ¦ β
(Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)))) |
75 | 67, 71, 74 | syl2anc 584 |
. . 3
β’ (πΉ β (π NGHom π) β (πΉ β ((MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) Cn
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) β (πΉ:(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ β β+ βπ β β+
βπ¦ β
(Baseβπ)((π₯((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))π¦) < π β ((πΉβπ₯)((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))(πΉβπ¦)) < π)))) |
76 | 5, 64, 75 | mpbir2and 711 |
. 2
β’ (πΉ β (π NGHom π) β πΉ β ((MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) Cn
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))))) |
77 | | nghmcn.j |
. . . . 5
β’ π½ = (TopOpenβπ) |
78 | 77, 2, 65 | mstopn 23949 |
. . . 4
β’ (π β MetSp β π½ =
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
79 | 17, 78 | syl 17 |
. . 3
β’ (πΉ β (π NGHom π) β π½ = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
80 | | nghmcn.k |
. . . . 5
β’ πΎ = (TopOpenβπ) |
81 | 80, 3, 69 | mstopn 23949 |
. . . 4
β’ (π β MetSp β πΎ =
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
82 | 29, 81 | syl 17 |
. . 3
β’ (πΉ β (π NGHom π) β πΎ = (MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ))))) |
83 | 79, 82 | oveq12d 7423 |
. 2
β’ (πΉ β (π NGHom π) β (π½ Cn πΎ) = ((MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))) Cn
(MetOpenβ((distβπ) βΎ ((Baseβπ) Γ (Baseβπ)))))) |
84 | 76, 83 | eleqtrrd 2836 |
1
β’ (πΉ β (π NGHom π) β πΉ β (π½ Cn πΎ)) |