| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nglmle | Structured version Visualization version GIF version | ||
| Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nglmle.1 | ⊢ 𝑋 = (Base‘𝐺) |
| nglmle.2 | ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| nglmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| nglmle.5 | ⊢ 𝑁 = (norm‘𝐺) |
| nglmle.6 | ⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
| nglmle.7 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| nglmle.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| nglmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| nglmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) |
| Ref | Expression |
|---|---|
| nglmle | ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nglmle.6 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ NrmGrp) | |
| 2 | ngpgrp 24503 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | ngpms 24504 | . . . . . . . . 9 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) |
| 6 | msxms 24358 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ ∞MetSp) |
| 8 | nglmle.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | nglmle.2 | . . . . . . . 8 ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) | |
| 10 | 8, 9 | xmsxmet 24360 | . . . . . . 7 ⊢ (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | nglmle.3 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 13 | 12 | mopntopon 24343 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | nglmle.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 16 | lmcl 23200 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 18 | nglmle.5 | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
| 19 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | eqid 2729 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 21 | 18, 8, 19, 20, 9 | nmval2 24496 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 22 | 3, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 23 | 8, 19 | grpidcl 18862 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) |
| 25 | xmetsym 24251 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) | |
| 26 | 11, 17, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) |
| 27 | 22, 26 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝑁‘𝑃) = ((0g‘𝐺)𝐷𝑃)) |
| 28 | nnuz 12796 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 29 | 1zzd 12524 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 30 | nglmle.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 31 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 ∈ Grp) |
| 32 | nglmle.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 33 | 32 | ffvelcdmda 7022 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 34 | 18, 8, 19, 20, 9 | nmval2 24496 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 35 | 31, 33, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 36 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
| 37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0g‘𝐺) ∈ 𝑋) |
| 38 | xmetsym 24251 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) | |
| 39 | 36, 33, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 40 | 35, 39 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 41 | nglmle.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) | |
| 42 | 40, 41 | eqbrtrrd 5119 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((0g‘𝐺)𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 43 | 28, 12, 11, 29, 15, 24, 30, 42 | lmle 25217 | . 2 ⊢ (𝜑 → ((0g‘𝐺)𝐷𝑃) ≤ 𝑅) |
| 44 | 27, 43 | eqbrtrd 5117 | 1 ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 × cxp 5621 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1c1 11029 ℝ*cxr 11167 ≤ cle 11169 ℕcn 12146 Basecbs 17138 distcds 17188 0gc0g 17361 Grpcgrp 18830 ∞Metcxmet 21264 MetOpencmopn 21269 TopOnctopon 22813 ⇝𝑡clm 23129 ∞MetSpcxms 24221 MetSpcms 24222 normcnm 24480 NrmGrpcngp 24481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-0g 17363 df-topgen 17365 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-psmet 21271 df-xmet 21272 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-lm 23132 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |