MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   GIF version

Theorem nglmle 24810
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1 𝑋 = (Base‘𝐺)
nglmle.2 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
nglmle.3 𝐽 = (MetOpen‘𝐷)
nglmle.5 𝑁 = (norm‘𝐺)
nglmle.6 (𝜑𝐺 ∈ NrmGrp)
nglmle.7 (𝜑𝐹:ℕ⟶𝑋)
nglmle.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
nglmle.9 (𝜑𝑅 ∈ ℝ*)
nglmle.10 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
nglmle (𝜑 → (𝑁𝑃) ≤ 𝑅)
Distinct variable groups:   𝑘,𝐹   𝐷,𝑘   𝑘,𝐺   𝑘,𝐽   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝑁(𝑘)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
2 ngpgrp 24099 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ngpms 24100 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
51, 4syl 17 . . . . . . . 8 (𝜑𝐺 ∈ MetSp)
6 msxms 23951 . . . . . . . 8 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
75, 6syl 17 . . . . . . 7 (𝜑𝐺 ∈ ∞MetSp)
8 nglmle.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
9 nglmle.2 . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
108, 9xmsxmet 23953 . . . . . . 7 (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
117, 10syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
12 nglmle.3 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1312mopntopon 23936 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 nglmle.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
16 lmcl 22792 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
1714, 15, 16syl2anc 584 . . . 4 (𝜑𝑃𝑋)
18 nglmle.5 . . . . 5 𝑁 = (norm‘𝐺)
19 eqid 2732 . . . . 5 (0g𝐺) = (0g𝐺)
20 eqid 2732 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
2118, 8, 19, 20, 9nmval2 24092 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃𝑋) → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
223, 17, 21syl2anc 584 . . 3 (𝜑 → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
238, 19grpidcl 18846 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
243, 23syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝑋)
25 xmetsym 23844 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2611, 17, 24, 25syl3anc 1371 . . 3 (𝜑 → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2722, 26eqtrd 2772 . 2 (𝜑 → (𝑁𝑃) = ((0g𝐺)𝐷𝑃))
28 nnuz 12861 . . 3 ℕ = (ℤ‘1)
29 1zzd 12589 . . 3 (𝜑 → 1 ∈ ℤ)
30 nglmle.9 . . 3 (𝜑𝑅 ∈ ℝ*)
313adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 ∈ Grp)
32 nglmle.7 . . . . . . 7 (𝜑𝐹:ℕ⟶𝑋)
3332ffvelcdmda 7083 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
3418, 8, 19, 20, 9nmval2 24092 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝑋) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3531, 33, 34syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3611adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
3724adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (0g𝐺) ∈ 𝑋)
38 xmetsym 23844 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (0g𝐺) ∈ 𝑋) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
3936, 33, 37, 38syl3anc 1371 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
4035, 39eqtrd 2772 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((0g𝐺)𝐷(𝐹𝑘)))
41 nglmle.10 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
4240, 41eqbrtrrd 5171 . . 3 ((𝜑𝑘 ∈ ℕ) → ((0g𝐺)𝐷(𝐹𝑘)) ≤ 𝑅)
4328, 12, 11, 29, 15, 24, 30, 42lmle 24809 . 2 (𝜑 → ((0g𝐺)𝐷𝑃) ≤ 𝑅)
4427, 43eqbrtrd 5169 1 (𝜑 → (𝑁𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147   × cxp 5673  cres 5677  wf 6536  cfv 6540  (class class class)co 7405  1c1 11107  *cxr 11243  cle 11245  cn 12208  Basecbs 17140  distcds 17202  0gc0g 17381  Grpcgrp 18815  ∞Metcxmet 20921  MetOpencmopn 20926  TopOnctopon 22403  𝑡clm 22721  ∞MetSpcxms 23814  MetSpcms 23815  normcnm 24076  NrmGrpcngp 24077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-0g 17383  df-topgen 17385  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-psmet 20928  df-xmet 20929  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-lm 22724  df-xms 23817  df-ms 23818  df-nm 24082  df-ngp 24083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator