| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nglmle | Structured version Visualization version GIF version | ||
| Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nglmle.1 | ⊢ 𝑋 = (Base‘𝐺) |
| nglmle.2 | ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| nglmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| nglmle.5 | ⊢ 𝑁 = (norm‘𝐺) |
| nglmle.6 | ⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
| nglmle.7 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| nglmle.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| nglmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| nglmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) |
| Ref | Expression |
|---|---|
| nglmle | ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nglmle.6 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ NrmGrp) | |
| 2 | ngpgrp 24493 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | ngpms 24494 | . . . . . . . . 9 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) |
| 6 | msxms 24348 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ ∞MetSp) |
| 8 | nglmle.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | nglmle.2 | . . . . . . . 8 ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) | |
| 10 | 8, 9 | xmsxmet 24350 | . . . . . . 7 ⊢ (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | nglmle.3 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 13 | 12 | mopntopon 24333 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | nglmle.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 16 | lmcl 23190 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 18 | nglmle.5 | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | eqid 2730 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 21 | 18, 8, 19, 20, 9 | nmval2 24486 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 22 | 3, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 23 | 8, 19 | grpidcl 18903 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) |
| 25 | xmetsym 24241 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) | |
| 26 | 11, 17, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) |
| 27 | 22, 26 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝑁‘𝑃) = ((0g‘𝐺)𝐷𝑃)) |
| 28 | nnuz 12842 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 29 | 1zzd 12570 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 30 | nglmle.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 31 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 ∈ Grp) |
| 32 | nglmle.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 33 | 32 | ffvelcdmda 7058 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 34 | 18, 8, 19, 20, 9 | nmval2 24486 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 35 | 31, 33, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 36 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
| 37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0g‘𝐺) ∈ 𝑋) |
| 38 | xmetsym 24241 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) | |
| 39 | 36, 33, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 40 | 35, 39 | eqtrd 2765 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 41 | nglmle.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) | |
| 42 | 40, 41 | eqbrtrrd 5133 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((0g‘𝐺)𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 43 | 28, 12, 11, 29, 15, 24, 30, 42 | lmle 25207 | . 2 ⊢ (𝜑 → ((0g‘𝐺)𝐷𝑃) ≤ 𝑅) |
| 44 | 27, 43 | eqbrtrd 5131 | 1 ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 × cxp 5638 ↾ cres 5642 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 1c1 11075 ℝ*cxr 11213 ≤ cle 11215 ℕcn 12187 Basecbs 17185 distcds 17235 0gc0g 17408 Grpcgrp 18871 ∞Metcxmet 21255 MetOpencmopn 21260 TopOnctopon 22803 ⇝𝑡clm 23119 ∞MetSpcxms 24211 MetSpcms 24212 normcnm 24470 NrmGrpcngp 24471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-0g 17410 df-topgen 17412 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-psmet 21262 df-xmet 21263 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-lm 23122 df-xms 24214 df-ms 24215 df-nm 24476 df-ngp 24477 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |