| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nglmle | Structured version Visualization version GIF version | ||
| Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nglmle.1 | ⊢ 𝑋 = (Base‘𝐺) |
| nglmle.2 | ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| nglmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| nglmle.5 | ⊢ 𝑁 = (norm‘𝐺) |
| nglmle.6 | ⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
| nglmle.7 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| nglmle.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| nglmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| nglmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) |
| Ref | Expression |
|---|---|
| nglmle | ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nglmle.6 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ NrmGrp) | |
| 2 | ngpgrp 24515 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | ngpms 24516 | . . . . . . . . 9 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) |
| 6 | msxms 24370 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ ∞MetSp) |
| 8 | nglmle.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | nglmle.2 | . . . . . . . 8 ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) | |
| 10 | 8, 9 | xmsxmet 24372 | . . . . . . 7 ⊢ (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | nglmle.3 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 13 | 12 | mopntopon 24355 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | nglmle.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 16 | lmcl 23213 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 18 | nglmle.5 | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
| 19 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | eqid 2731 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 21 | 18, 8, 19, 20, 9 | nmval2 24508 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 22 | 3, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 23 | 8, 19 | grpidcl 18878 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) |
| 25 | xmetsym 24263 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) | |
| 26 | 11, 17, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) |
| 27 | 22, 26 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝑁‘𝑃) = ((0g‘𝐺)𝐷𝑃)) |
| 28 | nnuz 12775 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 29 | 1zzd 12503 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 30 | nglmle.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 31 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 ∈ Grp) |
| 32 | nglmle.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 33 | 32 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 34 | 18, 8, 19, 20, 9 | nmval2 24508 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 35 | 31, 33, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 36 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
| 37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0g‘𝐺) ∈ 𝑋) |
| 38 | xmetsym 24263 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) | |
| 39 | 36, 33, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 40 | 35, 39 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 41 | nglmle.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) | |
| 42 | 40, 41 | eqbrtrrd 5115 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((0g‘𝐺)𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 43 | 28, 12, 11, 29, 15, 24, 30, 42 | lmle 25229 | . 2 ⊢ (𝜑 → ((0g‘𝐺)𝐷𝑃) ≤ 𝑅) |
| 44 | 27, 43 | eqbrtrd 5113 | 1 ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 × cxp 5614 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1c1 11007 ℝ*cxr 11145 ≤ cle 11147 ℕcn 12125 Basecbs 17120 distcds 17170 0gc0g 17343 Grpcgrp 18846 ∞Metcxmet 21277 MetOpencmopn 21282 TopOnctopon 22826 ⇝𝑡clm 23142 ∞MetSpcxms 24233 MetSpcms 24234 normcnm 24492 NrmGrpcngp 24493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-0g 17345 df-topgen 17347 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-psmet 21284 df-xmet 21285 df-bl 21287 df-mopn 21288 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-lm 23145 df-xms 24236 df-ms 24237 df-nm 24498 df-ngp 24499 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |