Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nglmle | Structured version Visualization version GIF version |
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
Ref | Expression |
---|---|
nglmle.1 | ⊢ 𝑋 = (Base‘𝐺) |
nglmle.2 | ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
nglmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
nglmle.5 | ⊢ 𝑁 = (norm‘𝐺) |
nglmle.6 | ⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
nglmle.7 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
nglmle.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
nglmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
nglmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) |
Ref | Expression |
---|---|
nglmle | ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nglmle.6 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ NrmGrp) | |
2 | ngpgrp 23755 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ngpms 23756 | . . . . . . . . 9 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) |
6 | msxms 23607 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ ∞MetSp) |
8 | nglmle.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
9 | nglmle.2 | . . . . . . . 8 ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) | |
10 | 8, 9 | xmsxmet 23609 | . . . . . . 7 ⊢ (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
12 | nglmle.3 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
13 | 12 | mopntopon 23592 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
15 | nglmle.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
16 | lmcl 22448 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
18 | nglmle.5 | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
19 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
20 | eqid 2738 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
21 | 18, 8, 19, 20, 9 | nmval2 23748 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
22 | 3, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
23 | 8, 19 | grpidcl 18607 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) |
25 | xmetsym 23500 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) | |
26 | 11, 17, 24, 25 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) |
27 | 22, 26 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝑁‘𝑃) = ((0g‘𝐺)𝐷𝑃)) |
28 | nnuz 12621 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
29 | 1zzd 12351 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
30 | nglmle.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
31 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 ∈ Grp) |
32 | nglmle.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
33 | 32 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
34 | 18, 8, 19, 20, 9 | nmval2 23748 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
35 | 31, 33, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
36 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
37 | 24 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0g‘𝐺) ∈ 𝑋) |
38 | xmetsym 23500 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) | |
39 | 36, 33, 37, 38 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
40 | 35, 39 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
41 | nglmle.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) | |
42 | 40, 41 | eqbrtrrd 5098 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((0g‘𝐺)𝐷(𝐹‘𝑘)) ≤ 𝑅) |
43 | 28, 12, 11, 29, 15, 24, 30, 42 | lmle 24465 | . 2 ⊢ (𝜑 → ((0g‘𝐺)𝐷𝑃) ≤ 𝑅) |
44 | 27, 43 | eqbrtrd 5096 | 1 ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 × cxp 5587 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1c1 10872 ℝ*cxr 11008 ≤ cle 11010 ℕcn 11973 Basecbs 16912 distcds 16971 0gc0g 17150 Grpcgrp 18577 ∞Metcxmet 20582 MetOpencmopn 20587 TopOnctopon 22059 ⇝𝑡clm 22377 ∞MetSpcxms 23470 MetSpcms 23471 normcnm 23732 NrmGrpcngp 23733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-0g 17152 df-topgen 17154 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-psmet 20589 df-xmet 20590 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-lm 22380 df-xms 23473 df-ms 23474 df-nm 23738 df-ngp 23739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |