MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   GIF version

Theorem nglmle 25208
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1 𝑋 = (Base‘𝐺)
nglmle.2 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
nglmle.3 𝐽 = (MetOpen‘𝐷)
nglmle.5 𝑁 = (norm‘𝐺)
nglmle.6 (𝜑𝐺 ∈ NrmGrp)
nglmle.7 (𝜑𝐹:ℕ⟶𝑋)
nglmle.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
nglmle.9 (𝜑𝑅 ∈ ℝ*)
nglmle.10 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
nglmle (𝜑 → (𝑁𝑃) ≤ 𝑅)
Distinct variable groups:   𝑘,𝐹   𝐷,𝑘   𝑘,𝐺   𝑘,𝐽   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝑁(𝑘)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
2 ngpgrp 24493 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ngpms 24494 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
51, 4syl 17 . . . . . . . 8 (𝜑𝐺 ∈ MetSp)
6 msxms 24348 . . . . . . . 8 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
75, 6syl 17 . . . . . . 7 (𝜑𝐺 ∈ ∞MetSp)
8 nglmle.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
9 nglmle.2 . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
108, 9xmsxmet 24350 . . . . . . 7 (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
117, 10syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
12 nglmle.3 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1312mopntopon 24333 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 nglmle.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
16 lmcl 23190 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
1714, 15, 16syl2anc 584 . . . 4 (𝜑𝑃𝑋)
18 nglmle.5 . . . . 5 𝑁 = (norm‘𝐺)
19 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
20 eqid 2730 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
2118, 8, 19, 20, 9nmval2 24486 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃𝑋) → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
223, 17, 21syl2anc 584 . . 3 (𝜑 → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
238, 19grpidcl 18903 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
243, 23syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝑋)
25 xmetsym 24241 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2611, 17, 24, 25syl3anc 1373 . . 3 (𝜑 → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2722, 26eqtrd 2765 . 2 (𝜑 → (𝑁𝑃) = ((0g𝐺)𝐷𝑃))
28 nnuz 12842 . . 3 ℕ = (ℤ‘1)
29 1zzd 12570 . . 3 (𝜑 → 1 ∈ ℤ)
30 nglmle.9 . . 3 (𝜑𝑅 ∈ ℝ*)
313adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 ∈ Grp)
32 nglmle.7 . . . . . . 7 (𝜑𝐹:ℕ⟶𝑋)
3332ffvelcdmda 7058 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
3418, 8, 19, 20, 9nmval2 24486 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝑋) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3531, 33, 34syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3611adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
3724adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (0g𝐺) ∈ 𝑋)
38 xmetsym 24241 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (0g𝐺) ∈ 𝑋) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
3936, 33, 37, 38syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
4035, 39eqtrd 2765 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((0g𝐺)𝐷(𝐹𝑘)))
41 nglmle.10 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
4240, 41eqbrtrrd 5133 . . 3 ((𝜑𝑘 ∈ ℕ) → ((0g𝐺)𝐷(𝐹𝑘)) ≤ 𝑅)
4328, 12, 11, 29, 15, 24, 30, 42lmle 25207 . 2 (𝜑 → ((0g𝐺)𝐷𝑃) ≤ 𝑅)
4427, 43eqbrtrd 5131 1 (𝜑 → (𝑁𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109   × cxp 5638  cres 5642  wf 6509  cfv 6513  (class class class)co 7389  1c1 11075  *cxr 11213  cle 11215  cn 12187  Basecbs 17185  distcds 17235  0gc0g 17408  Grpcgrp 18871  ∞Metcxmet 21255  MetOpencmopn 21260  TopOnctopon 22803  𝑡clm 23119  ∞MetSpcxms 24211  MetSpcms 24212  normcnm 24470  NrmGrpcngp 24471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-0g 17410  df-topgen 17412  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-psmet 21262  df-xmet 21263  df-bl 21265  df-mopn 21266  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-lm 23122  df-xms 24214  df-ms 24215  df-nm 24476  df-ngp 24477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator