| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nglmle | Structured version Visualization version GIF version | ||
| Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nglmle.1 | ⊢ 𝑋 = (Base‘𝐺) |
| nglmle.2 | ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
| nglmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| nglmle.5 | ⊢ 𝑁 = (norm‘𝐺) |
| nglmle.6 | ⊢ (𝜑 → 𝐺 ∈ NrmGrp) |
| nglmle.7 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| nglmle.8 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| nglmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| nglmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) |
| Ref | Expression |
|---|---|
| nglmle | ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nglmle.6 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ NrmGrp) | |
| 2 | ngpgrp 24515 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | ngpms 24516 | . . . . . . . . 9 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 5 | 1, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) |
| 6 | msxms 24370 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ ∞MetSp) |
| 8 | nglmle.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | nglmle.2 | . . . . . . . 8 ⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) | |
| 10 | 8, 9 | xmsxmet 24372 | . . . . . . 7 ⊢ (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | nglmle.3 | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 13 | 12 | mopntopon 24355 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | nglmle.8 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 16 | lmcl 23213 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 18 | nglmle.5 | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
| 19 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 20 | eqid 2733 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 21 | 18, 8, 19, 20, 9 | nmval2 24508 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 22 | 3, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑃) = (𝑃𝐷(0g‘𝐺))) |
| 23 | 8, 19 | grpidcl 18880 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 24 | 3, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑋) |
| 25 | xmetsym 24263 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) | |
| 26 | 11, 17, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷𝑃)) |
| 27 | 22, 26 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝑁‘𝑃) = ((0g‘𝐺)𝐷𝑃)) |
| 28 | nnuz 12777 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 29 | 1zzd 12509 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 30 | nglmle.9 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 31 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 ∈ Grp) |
| 32 | nglmle.7 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 33 | 32 | ffvelcdmda 7023 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 34 | 18, 8, 19, 20, 9 | nmval2 24508 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑘) ∈ 𝑋) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 35 | 31, 33, 34 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((𝐹‘𝑘)𝐷(0g‘𝐺))) |
| 36 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
| 37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0g‘𝐺) ∈ 𝑋) |
| 38 | xmetsym 24263 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) | |
| 39 | 36, 33, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(0g‘𝐺)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 40 | 35, 39 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) = ((0g‘𝐺)𝐷(𝐹‘𝑘))) |
| 41 | nglmle.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑁‘(𝐹‘𝑘)) ≤ 𝑅) | |
| 42 | 40, 41 | eqbrtrrd 5117 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((0g‘𝐺)𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 43 | 28, 12, 11, 29, 15, 24, 30, 42 | lmle 25229 | . 2 ⊢ (𝜑 → ((0g‘𝐺)𝐷𝑃) ≤ 𝑅) |
| 44 | 27, 43 | eqbrtrd 5115 | 1 ⊢ (𝜑 → (𝑁‘𝑃) ≤ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 × cxp 5617 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1c1 11014 ℝ*cxr 11152 ≤ cle 11154 ℕcn 12132 Basecbs 17122 distcds 17172 0gc0g 17345 Grpcgrp 18848 ∞Metcxmet 21278 MetOpencmopn 21283 TopOnctopon 22826 ⇝𝑡clm 23142 ∞MetSpcxms 24233 MetSpcms 24234 normcnm 24492 NrmGrpcngp 24493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-0g 17347 df-topgen 17349 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-psmet 21285 df-xmet 21286 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-lm 23145 df-xms 24236 df-ms 24237 df-nm 24498 df-ngp 24499 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |