MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   GIF version

Theorem nglmle 23907
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1 𝑋 = (Base‘𝐺)
nglmle.2 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
nglmle.3 𝐽 = (MetOpen‘𝐷)
nglmle.5 𝑁 = (norm‘𝐺)
nglmle.6 (𝜑𝐺 ∈ NrmGrp)
nglmle.7 (𝜑𝐹:ℕ⟶𝑋)
nglmle.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
nglmle.9 (𝜑𝑅 ∈ ℝ*)
nglmle.10 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
nglmle (𝜑 → (𝑁𝑃) ≤ 𝑅)
Distinct variable groups:   𝑘,𝐹   𝐷,𝑘   𝑘,𝐺   𝑘,𝐽   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝑁(𝑘)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5 (𝜑𝐺 ∈ NrmGrp)
2 ngpgrp 23210 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ngpms 23211 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
51, 4syl 17 . . . . . . . 8 (𝜑𝐺 ∈ MetSp)
6 msxms 23066 . . . . . . . 8 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
75, 6syl 17 . . . . . . 7 (𝜑𝐺 ∈ ∞MetSp)
8 nglmle.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
9 nglmle.2 . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
108, 9xmsxmet 23068 . . . . . . 7 (𝐺 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
117, 10syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
12 nglmle.3 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1312mopntopon 23051 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1411, 13syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
15 nglmle.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
16 lmcl 21907 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
1714, 15, 16syl2anc 586 . . . 4 (𝜑𝑃𝑋)
18 nglmle.5 . . . . 5 𝑁 = (norm‘𝐺)
19 eqid 2823 . . . . 5 (0g𝐺) = (0g𝐺)
20 eqid 2823 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
2118, 8, 19, 20, 9nmval2 23203 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃𝑋) → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
223, 17, 21syl2anc 586 . . 3 (𝜑 → (𝑁𝑃) = (𝑃𝐷(0g𝐺)))
238, 19grpidcl 18133 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
243, 23syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝑋)
25 xmetsym 22959 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2611, 17, 24, 25syl3anc 1367 . . 3 (𝜑 → (𝑃𝐷(0g𝐺)) = ((0g𝐺)𝐷𝑃))
2722, 26eqtrd 2858 . 2 (𝜑 → (𝑁𝑃) = ((0g𝐺)𝐷𝑃))
28 nnuz 12284 . . 3 ℕ = (ℤ‘1)
29 1zzd 12016 . . 3 (𝜑 → 1 ∈ ℤ)
30 nglmle.9 . . 3 (𝜑𝑅 ∈ ℝ*)
313adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 ∈ Grp)
32 nglmle.7 . . . . . . 7 (𝜑𝐹:ℕ⟶𝑋)
3332ffvelrnda 6853 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
3418, 8, 19, 20, 9nmval2 23203 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐹𝑘) ∈ 𝑋) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3531, 33, 34syl2anc 586 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((𝐹𝑘)𝐷(0g𝐺)))
3611adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
3724adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (0g𝐺) ∈ 𝑋)
38 xmetsym 22959 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (0g𝐺) ∈ 𝑋) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
3936, 33, 37, 38syl3anc 1367 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(0g𝐺)) = ((0g𝐺)𝐷(𝐹𝑘)))
4035, 39eqtrd 2858 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) = ((0g𝐺)𝐷(𝐹𝑘)))
41 nglmle.10 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝑁‘(𝐹𝑘)) ≤ 𝑅)
4240, 41eqbrtrrd 5092 . . 3 ((𝜑𝑘 ∈ ℕ) → ((0g𝐺)𝐷(𝐹𝑘)) ≤ 𝑅)
4328, 12, 11, 29, 15, 24, 30, 42lmle 23906 . 2 (𝜑 → ((0g𝐺)𝐷𝑃) ≤ 𝑅)
4427, 43eqbrtrd 5090 1 (𝜑 → (𝑁𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068   × cxp 5555  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  1c1 10540  *cxr 10676  cle 10678  cn 11640  Basecbs 16485  distcds 16576  0gc0g 16715  Grpcgrp 18105  ∞Metcxmet 20532  MetOpencmopn 20537  TopOnctopon 21520  𝑡clm 21836  ∞MetSpcxms 22929  MetSpcms 22930  normcnm 23188  NrmGrpcngp 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-0g 16717  df-topgen 16719  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-psmet 20539  df-xmet 20540  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-lm 21839  df-xms 22932  df-ms 22933  df-nm 23194  df-ngp 23195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator