Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfv Structured version   Visualization version   GIF version

Theorem 2arymaptfv 45560
Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfv (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Distinct variable groups:   ,𝐹,𝑥,𝑦   ,𝑋,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfv
StepHypRef Expression
1 fveq1 6675 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
21mpoeq3dv 7249 . 2 ( = 𝐹 → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
3 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
4 eqid 2738 . . . 4 (0..^2) = (0..^2)
54naryrcl 45540 . . 3 ( ∈ (2-aryF 𝑋) → (2 ∈ ℕ0𝑋 ∈ V))
6 mpoexga 7803 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
76anidms 570 . . 3 (𝑋 ∈ V → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
85, 7simpl2im 507 . 2 ( ∈ (2-aryF 𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
92, 3, 8fvmpt3 6781 1 (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  Vcvv 3398  {cpr 4518  cop 4522  cmpt 5110  cfv 6339  (class class class)co 7172  cmpo 7174  0cc0 10617  1c1 10618  2c2 11773  0cn0 11978  ..^cfzo 13126  -aryF cnaryf 45535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-1st 7716  df-2nd 7717  df-naryf 45536
This theorem is referenced by:  2arymaptf1  45562
  Copyright terms: Public domain W3C validator