Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfv Structured version   Visualization version   GIF version

Theorem 2arymaptfv 48644
Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfv (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Distinct variable groups:   ,𝐹,𝑥,𝑦   ,𝑋,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfv
StepHypRef Expression
1 fveq1 6860 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
21mpoeq3dv 7471 . 2 ( = 𝐹 → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
3 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
4 eqid 2730 . . . 4 (0..^2) = (0..^2)
54naryrcl 48624 . . 3 ( ∈ (2-aryF 𝑋) → (2 ∈ ℕ0𝑋 ∈ V))
6 mpoexga 8059 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
76anidms 566 . . 3 (𝑋 ∈ V → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
85, 7simpl2im 503 . 2 ( ∈ (2-aryF 𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
92, 3, 8fvmpt3 6975 1 (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {cpr 4594  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076  2c2 12248  0cn0 12449  ..^cfzo 13622  -aryF cnaryf 48619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-naryf 48620
This theorem is referenced by:  2arymaptf1  48646
  Copyright terms: Public domain W3C validator