![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptfv | Structured version Visualization version GIF version |
Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
Ref | Expression |
---|---|
2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) |
Ref | Expression |
---|---|
2arymaptfv | ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6891 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) | |
2 | 1 | mpoeq3dv 7491 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) |
3 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) | |
4 | eqid 2731 | . . . 4 ⊢ (0..^2) = (0..^2) | |
5 | 4 | naryrcl 47406 | . . 3 ⊢ (ℎ ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
6 | mpoexga 8067 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V) | |
7 | 6 | anidms 566 | . . 3 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V) |
8 | 5, 7 | simpl2im 503 | . 2 ⊢ (ℎ ∈ (2-aryF 𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V) |
9 | 2, 3, 8 | fvmpt3 7003 | 1 ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {cpr 4631 ⟨cop 4635 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7412 ∈ cmpo 7414 0cc0 11113 1c1 11114 2c2 12272 ℕ0cn0 12477 ..^cfzo 13632 -aryF cnaryf 47401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-naryf 47402 |
This theorem is referenced by: 2arymaptf1 47428 |
Copyright terms: Public domain | W3C validator |