| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptfv | Structured version Visualization version GIF version | ||
| Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
| Ref | Expression |
|---|---|
| 2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Ref | Expression |
|---|---|
| 2arymaptfv | ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}) = (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉})) | |
| 2 | 1 | mpoeq3dv 7425 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| 3 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 4 | eqid 2731 | . . . 4 ⊢ (0..^2) = (0..^2) | |
| 5 | 4 | naryrcl 48669 | . . 3 ⊢ (ℎ ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 6 | mpoexga 8009 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) | |
| 7 | 6 | anidms 566 | . . 3 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) |
| 8 | 5, 7 | simpl2im 503 | . 2 ⊢ (ℎ ∈ (2-aryF 𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) |
| 9 | 2, 3, 8 | fvmpt3 6933 | 1 ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 〈cop 4582 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11006 1c1 11007 2c2 12180 ℕ0cn0 12381 ..^cfzo 13554 -aryF cnaryf 48664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-naryf 48665 |
| This theorem is referenced by: 2arymaptf1 48691 |
| Copyright terms: Public domain | W3C validator |