Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptfv Structured version   Visualization version   GIF version

Theorem 2arymaptfv 45885
Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptfv (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Distinct variable groups:   ,𝐹,𝑥,𝑦   ,𝑋,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,)

Proof of Theorem 2arymaptfv
StepHypRef Expression
1 fveq1 6755 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) = (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
21mpoeq3dv 7332 . 2 ( = 𝐹 → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
3 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
4 eqid 2738 . . . 4 (0..^2) = (0..^2)
54naryrcl 45865 . . 3 ( ∈ (2-aryF 𝑋) → (2 ∈ ℕ0𝑋 ∈ V))
6 mpoexga 7891 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
76anidms 566 . . 3 (𝑋 ∈ V → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
85, 7simpl2im 503 . 2 ( ∈ (2-aryF 𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ V)
92, 3, 8fvmpt3 6861 1 (𝐹 ∈ (2-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋, 𝑦𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  {cpr 4560  cop 4564  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  2c2 11958  0cn0 12163  ..^cfzo 13311  -aryF cnaryf 45860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-naryf 45861
This theorem is referenced by:  2arymaptf1  45887
  Copyright terms: Public domain W3C validator