| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptfv | Structured version Visualization version GIF version | ||
| Description: The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
| Ref | Expression |
|---|---|
| 2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Ref | Expression |
|---|---|
| 2arymaptfv | ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6825 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}) = (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉})) | |
| 2 | 1 | mpoeq3dv 7432 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| 3 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0..^2) = (0..^2) | |
| 5 | 4 | naryrcl 48620 | . . 3 ⊢ (ℎ ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 6 | mpoexga 8019 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) | |
| 7 | 6 | anidms 566 | . . 3 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) |
| 8 | 5, 7 | simpl2im 503 | . 2 ⊢ (ℎ ∈ (2-aryF 𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ V) |
| 9 | 2, 3, 8 | fvmpt3 6938 | 1 ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {cpr 4581 〈cop 4585 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 2c2 12201 ℕ0cn0 12402 ..^cfzo 13575 -aryF cnaryf 48615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-naryf 48616 |
| This theorem is referenced by: 2arymaptf1 48642 |
| Copyright terms: Public domain | W3C validator |