| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fv1arycl | Structured version Visualization version GIF version | ||
| Description: Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
| Ref | Expression |
|---|---|
| fv1arycl | ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (0..^1) = (0..^1) | |
| 2 | 1 | naryrcl 48553 | . . 3 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 3 | 1aryfvalel 48558 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0})⟶𝑋)) | |
| 4 | simp2 1137 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐺:(𝑋 ↑m {0})⟶𝑋) | |
| 5 | c0ex 11186 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 0 ∈ V) |
| 7 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 8 | 6, 7 | fsnd 6850 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉}:{0}⟶𝑋) |
| 9 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ V) | |
| 10 | snex 5399 | . . . . . . . . . 10 ⊢ {0} ∈ V | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {0} ∈ V) |
| 12 | 9, 11 | elmapd 8817 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → ({〈0, 𝐴〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐴〉}:{0}⟶𝑋)) |
| 13 | 8, 12 | mpbird 257 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉} ∈ (𝑋 ↑m {0})) |
| 14 | 4, 13 | ffvelcdmd 7064 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| 15 | 14 | 3exp 1119 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0})⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 16 | 3, 15 | sylbid 240 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 18 | 2, 17 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋)) |
| 19 | 18 | imp 406 | 1 ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3455 {csn 4597 〈cop 4603 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ↑m cmap 8803 0cc0 11086 1c1 11087 ℕ0cn0 12458 ..^cfzo 13628 -aryF cnaryf 48548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-naryf 48549 |
| This theorem is referenced by: 1arymaptf 48563 |
| Copyright terms: Public domain | W3C validator |