![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fv1arycl | Structured version Visualization version GIF version |
Description: Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
Ref | Expression |
---|---|
fv1arycl | ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (0..^1) = (0..^1) | |
2 | 1 | naryrcl 48519 | . . 3 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 1aryfvalel 48524 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0})⟶𝑋)) | |
4 | simp2 1138 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐺:(𝑋 ↑m {0})⟶𝑋) | |
5 | c0ex 11262 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 0 ∈ V) |
7 | simp3 1139 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
8 | 6, 7 | fsnd 6899 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉}:{0}⟶𝑋) |
9 | simp1 1137 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ V) | |
10 | snex 5445 | . . . . . . . . . 10 ⊢ {0} ∈ V | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {0} ∈ V) |
12 | 9, 11 | elmapd 8888 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → ({〈0, 𝐴〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐴〉}:{0}⟶𝑋)) |
13 | 8, 12 | mpbird 257 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉} ∈ (𝑋 ↑m {0})) |
14 | 4, 13 | ffvelcdmd 7112 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
15 | 14 | 3exp 1120 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0})⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
16 | 3, 15 | sylbid 240 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
17 | 16 | adantl 481 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
18 | 2, 17 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋)) |
19 | 18 | imp 406 | 1 ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3481 {csn 4634 〈cop 4640 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ↑m cmap 8874 0cc0 11162 1c1 11163 ℕ0cn0 12533 ..^cfzo 13700 -aryF cnaryf 48514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-naryf 48515 |
This theorem is referenced by: 1arymaptf 48529 |
Copyright terms: Public domain | W3C validator |