| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fv1arycl | Structured version Visualization version GIF version | ||
| Description: Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
| Ref | Expression |
|---|---|
| fv1arycl | ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (0..^1) = (0..^1) | |
| 2 | 1 | naryrcl 48486 | . . 3 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 3 | 1aryfvalel 48491 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0})⟶𝑋)) | |
| 4 | simp2 1137 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐺:(𝑋 ↑m {0})⟶𝑋) | |
| 5 | c0ex 11236 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 0 ∈ V) |
| 7 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 8 | 6, 7 | fsnd 6870 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉}:{0}⟶𝑋) |
| 9 | simp1 1136 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ V) | |
| 10 | snex 5416 | . . . . . . . . . 10 ⊢ {0} ∈ V | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {0} ∈ V) |
| 12 | 9, 11 | elmapd 8861 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → ({〈0, 𝐴〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐴〉}:{0}⟶𝑋)) |
| 13 | 8, 12 | mpbird 257 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → {〈0, 𝐴〉} ∈ (𝑋 ↑m {0})) |
| 14 | 4, 13 | ffvelcdmd 7084 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0})⟶𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| 15 | 14 | 3exp 1119 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0})⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 16 | 3, 15 | sylbid 240 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋))) |
| 18 | 2, 17 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (1-aryF 𝑋) → (𝐴 ∈ 𝑋 → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋)) |
| 19 | 18 | imp 406 | 1 ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3463 {csn 4606 〈cop 4612 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 0cc0 11136 1c1 11137 ℕ0cn0 12508 ..^cfzo 13675 -aryF cnaryf 48481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-naryf 48482 |
| This theorem is referenced by: 1arymaptf 48496 |
| Copyright terms: Public domain | W3C validator |