| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalel | Structured version Visualization version GIF version | ||
| Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
| Ref | Expression |
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| naryfvalel | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naryfval.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 2 | 1 | naryfval 48614 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
| 4 | ovex 7420 | . . 3 ⊢ (𝑋 ↑m 𝐼) ∈ V | |
| 5 | elmapg 8812 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | |
| 6 | 4, 5 | mpan2 691 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| 7 | 3, 6 | sylan9bb 509 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 -aryF cnaryf 48612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-naryf 48613 |
| This theorem is referenced by: naryfvalelfv 48618 naryfvalelwrdf 48619 0aryfvalel 48620 1aryfvalel 48622 2aryfvalel 48633 |
| Copyright terms: Public domain | W3C validator |