Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalel | Structured version Visualization version GIF version |
Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfvalel | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naryfval.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
2 | 1 | naryfval 45862 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
4 | ovex 7288 | . . 3 ⊢ (𝑋 ↑m 𝐼) ∈ V | |
5 | elmapg 8586 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | |
6 | 4, 5 | mpan2 687 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
7 | 3, 6 | sylan9bb 509 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 -aryF cnaryf 45860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-naryf 45861 |
This theorem is referenced by: naryfvalelfv 45866 naryfvalelwrdf 45867 0aryfvalel 45868 1aryfvalel 45870 2aryfvalel 45881 |
Copyright terms: Public domain | W3C validator |