|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalel | Structured version Visualization version GIF version | ||
| Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) | 
| Ref | Expression | 
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) | 
| Ref | Expression | 
|---|---|
| naryfvalel | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | naryfval.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 2 | 1 | naryfval 48554 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | 
| 3 | 2 | eleq2d 2826 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)))) | 
| 4 | ovex 7465 | . . 3 ⊢ (𝑋 ↑m 𝐼) ∈ V | |
| 5 | elmapg 8880 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | |
| 6 | 4, 5 | mpan2 691 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | 
| 7 | 3, 6 | sylan9bb 509 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⟶wf 6556 (class class class)co 7432 ↑m cmap 8867 0cc0 11156 ℕ0cn0 12528 ..^cfzo 13695 -aryF cnaryf 48552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-naryf 48553 | 
| This theorem is referenced by: naryfvalelfv 48558 naryfvalelwrdf 48559 0aryfvalel 48560 1aryfvalel 48562 2aryfvalel 48573 | 
| Copyright terms: Public domain | W3C validator |