Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalel | Structured version Visualization version GIF version |
Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfvalel | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naryfval.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
2 | 1 | naryfval 45528 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
3 | 2 | eleq2d 2818 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
4 | ovex 7203 | . . 3 ⊢ (𝑋 ↑m 𝐼) ∈ V | |
5 | elmapg 8450 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | |
6 | 4, 5 | mpan2 691 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
7 | 3, 6 | sylan9bb 513 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ⟶wf 6335 (class class class)co 7170 ↑m cmap 8437 0cc0 10615 ℕ0cn0 11976 ..^cfzo 13124 -aryF cnaryf 45526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-map 8439 df-naryf 45527 |
This theorem is referenced by: naryfvalelfv 45532 naryfvalelwrdf 45533 0aryfvalel 45534 1aryfvalel 45536 2aryfvalel 45547 |
Copyright terms: Public domain | W3C validator |