Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalel Structured version   Visualization version   GIF version

Theorem naryfvalel 48364
Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalel ((𝑁 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))

Proof of Theorem naryfvalel
StepHypRef Expression
1 naryfval.i . . . 4 𝐼 = (0..^𝑁)
21naryfval 48362 . . 3 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32eleq2d 2830 . 2 (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋m (𝑋m 𝐼))))
4 ovex 7481 . . 3 (𝑋m 𝐼) ∈ V
5 elmapg 8897 . . 3 ((𝑋𝑉 ∧ (𝑋m 𝐼) ∈ V) → (𝐹 ∈ (𝑋m (𝑋m 𝐼)) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
64, 5mpan2 690 . 2 (𝑋𝑉 → (𝐹 ∈ (𝑋m (𝑋m 𝐼)) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
73, 6sylan9bb 509 1 ((𝑁 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wf 6569  (class class class)co 7448  m cmap 8884  0cc0 11184  0cn0 12553  ..^cfzo 13711  -aryF cnaryf 48360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-naryf 48361
This theorem is referenced by:  naryfvalelfv  48366  naryfvalelwrdf  48367  0aryfvalel  48368  1aryfvalel  48370  2aryfvalel  48381
  Copyright terms: Public domain W3C validator