Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalel Structured version   Visualization version   GIF version

Theorem naryfvalel 48577
Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalel ((𝑁 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))

Proof of Theorem naryfvalel
StepHypRef Expression
1 naryfval.i . . . 4 𝐼 = (0..^𝑁)
21naryfval 48575 . . 3 (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋m (𝑋m 𝐼)))
32eleq2d 2821 . 2 (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋m (𝑋m 𝐼))))
4 ovex 7443 . . 3 (𝑋m 𝐼) ∈ V
5 elmapg 8858 . . 3 ((𝑋𝑉 ∧ (𝑋m 𝐼) ∈ V) → (𝐹 ∈ (𝑋m (𝑋m 𝐼)) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
64, 5mpan2 691 . 2 (𝑋𝑉 → (𝐹 ∈ (𝑋m (𝑋m 𝐼)) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
73, 6sylan9bb 509 1 ((𝑁 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wf 6532  (class class class)co 7410  m cmap 8845  0cc0 11134  0cn0 12506  ..^cfzo 13676  -aryF cnaryf 48573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-naryf 48574
This theorem is referenced by:  naryfvalelfv  48579  naryfvalelwrdf  48580  0aryfvalel  48581  1aryfvalel  48583  2aryfvalel  48594
  Copyright terms: Public domain W3C validator