| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalel | Structured version Visualization version GIF version | ||
| Description: An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
| Ref | Expression |
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| naryfvalel | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naryfval.i | . . . 4 ⊢ 𝐼 = (0..^𝑁) | |
| 2 | 1 | naryfval 48668 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) |
| 3 | 2 | eleq2d 2817 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)))) |
| 4 | ovex 7379 | . . 3 ⊢ (𝑋 ↑m 𝐼) ∈ V | |
| 5 | elmapg 8763 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 ↑m 𝐼) ∈ V) → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | |
| 6 | 4, 5 | mpan2 691 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (𝑋 ↑m (𝑋 ↑m 𝐼)) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| 7 | 3, 6 | sylan9bb 509 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 -aryF cnaryf 48666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-naryf 48667 |
| This theorem is referenced by: naryfvalelfv 48672 naryfvalelwrdf 48673 0aryfvalel 48674 1aryfvalel 48676 2aryfvalel 48687 |
| Copyright terms: Public domain | W3C validator |