Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0aryfvalelfv Structured version   Visualization version   GIF version

Theorem 0aryfvalelfv 47410
Description: The value of a nullary (endo)function on a set 𝑋. (Contributed by AV, 19-May-2024.)
Assertion
Ref Expression
0aryfvalelfv (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥𝑋 (𝐹‘∅) = 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem 0aryfvalelfv
StepHypRef Expression
1 eqid 2731 . . 3 (0..^0) = (0..^0)
21naryrcl 47406 . 2 (𝐹 ∈ (0-aryF 𝑋) → (0 ∈ ℕ0𝑋 ∈ V))
3 0aryfvalel 47409 . . . 4 (𝑋 ∈ V → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
4 0ex 5308 . . . . . . 7 ∅ ∈ V
5 fvsng 7181 . . . . . . 7 ((∅ ∈ V ∧ 𝑥𝑋) → ({⟨∅, 𝑥⟩}‘∅) = 𝑥)
64, 5mpan 687 . . . . . 6 (𝑥𝑋 → ({⟨∅, 𝑥⟩}‘∅) = 𝑥)
7 fveq1 6891 . . . . . . 7 (𝐹 = {⟨∅, 𝑥⟩} → (𝐹‘∅) = ({⟨∅, 𝑥⟩}‘∅))
87eqeq1d 2733 . . . . . 6 (𝐹 = {⟨∅, 𝑥⟩} → ((𝐹‘∅) = 𝑥 ↔ ({⟨∅, 𝑥⟩}‘∅) = 𝑥))
96, 8syl5ibrcom 246 . . . . 5 (𝑥𝑋 → (𝐹 = {⟨∅, 𝑥⟩} → (𝐹‘∅) = 𝑥))
109reximia 3080 . . . 4 (∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩} → ∃𝑥𝑋 (𝐹‘∅) = 𝑥)
113, 10syl6bi 252 . . 3 (𝑋 ∈ V → (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥𝑋 (𝐹‘∅) = 𝑥))
1211adantl 481 . 2 ((0 ∈ ℕ0𝑋 ∈ V) → (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥𝑋 (𝐹‘∅) = 𝑥))
132, 12mpcom 38 1 (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥𝑋 (𝐹‘∅) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wrex 3069  Vcvv 3473  c0 4323  {csn 4629  cop 4635  cfv 6544  (class class class)co 7412  0cc0 11113  0cn0 12477  ..^cfzo 13632  -aryF cnaryf 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-naryf 47402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator