| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arymaptfv | Structured version Visualization version GIF version | ||
| Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
| Ref | Expression |
|---|---|
| 1arymaptfv.h | ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) |
| Ref | Expression |
|---|---|
| 1arymaptfv | ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{〈0, 𝑥〉}) = (𝐹‘{〈0, 𝑥〉})) | |
| 2 | 1 | mpteq2dv 5196 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉})) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| 3 | 1arymaptfv.h | . 2 ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (0..^1) = (0..^1) | |
| 5 | 4 | naryrcl 48593 | . . . 4 ⊢ (ℎ ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 6 | 5 | simprd 495 | . . 3 ⊢ (ℎ ∈ (1-aryF 𝑋) → 𝑋 ∈ V) |
| 7 | 6 | mptexd 7180 | . 2 ⊢ (ℎ ∈ (1-aryF 𝑋) → (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉})) ∈ V) |
| 8 | 2, 3, 7 | fvmpt3 6954 | 1 ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℕ0cn0 12418 ..^cfzo 13591 -aryF cnaryf 48588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-naryf 48589 |
| This theorem is referenced by: 1arymaptf1 48604 |
| Copyright terms: Public domain | W3C validator |