Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfv Structured version   Visualization version   GIF version

Theorem 1arymaptfv 48490
Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfv (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Distinct variable groups:   ,𝐹,𝑥   ,𝑋,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfv
StepHypRef Expression
1 fveq1 6906 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩}) = (𝐹‘{⟨0, 𝑥⟩}))
21mpteq2dv 5250 . 2 ( = 𝐹 → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
3 1arymaptfv.h . 2 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
4 eqid 2735 . . . . 5 (0..^1) = (0..^1)
54naryrcl 48481 . . . 4 ( ∈ (1-aryF 𝑋) → (1 ∈ ℕ0𝑋 ∈ V))
65simprd 495 . . 3 ( ∈ (1-aryF 𝑋) → 𝑋 ∈ V)
76mptexd 7244 . 2 ( ∈ (1-aryF 𝑋) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) ∈ V)
82, 3, 7fvmpt3 7020 1 (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  0cn0 12524  ..^cfzo 13691  -aryF cnaryf 48476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-naryf 48477
This theorem is referenced by:  1arymaptf1  48492
  Copyright terms: Public domain W3C validator