| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arymaptfv | Structured version Visualization version GIF version | ||
| Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
| Ref | Expression |
|---|---|
| 1arymaptfv.h | ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) |
| Ref | Expression |
|---|---|
| 1arymaptfv | ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6880 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{〈0, 𝑥〉}) = (𝐹‘{〈0, 𝑥〉})) | |
| 2 | 1 | mpteq2dv 5220 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉})) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| 3 | 1arymaptfv.h | . 2 ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (0..^1) = (0..^1) | |
| 5 | 4 | naryrcl 48591 | . . . 4 ⊢ (ℎ ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 6 | 5 | simprd 495 | . . 3 ⊢ (ℎ ∈ (1-aryF 𝑋) → 𝑋 ∈ V) |
| 7 | 6 | mptexd 7221 | . 2 ⊢ (ℎ ∈ (1-aryF 𝑋) → (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉})) ∈ V) |
| 8 | 2, 3, 7 | fvmpt3 6995 | 1 ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 ℕ0cn0 12506 ..^cfzo 13676 -aryF cnaryf 48586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-naryf 48587 |
| This theorem is referenced by: 1arymaptf1 48602 |
| Copyright terms: Public domain | W3C validator |