![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arymaptfv | Structured version Visualization version GIF version |
Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
Ref | Expression |
---|---|
1arymaptfv.h | ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩}))) |
Ref | Expression |
---|---|
1arymaptfv | ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6890 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{⟨0, 𝑥⟩}) = (𝐹‘{⟨0, 𝑥⟩})) | |
2 | 1 | mpteq2dv 5250 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩})) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
3 | 1arymaptfv.h | . 2 ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩}))) | |
4 | eqid 2732 | . . . . 5 ⊢ (0..^1) = (0..^1) | |
5 | 4 | naryrcl 47307 | . . . 4 ⊢ (ℎ ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
6 | 5 | simprd 496 | . . 3 ⊢ (ℎ ∈ (1-aryF 𝑋) → 𝑋 ∈ V) |
7 | 6 | mptexd 7225 | . 2 ⊢ (ℎ ∈ (1-aryF 𝑋) → (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩})) ∈ V) |
8 | 2, 3, 7 | fvmpt3 7002 | 1 ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 ℕ0cn0 12471 ..^cfzo 13626 -aryF cnaryf 47302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-naryf 47303 |
This theorem is referenced by: 1arymaptf1 47318 |
Copyright terms: Public domain | W3C validator |