![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arymaptfv | Structured version Visualization version GIF version |
Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
Ref | Expression |
---|---|
1arymaptfv.h | ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩}))) |
Ref | Expression |
---|---|
1arymaptfv | ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6891 | . . 3 ⊢ (ℎ = 𝐹 → (ℎ‘{⟨0, 𝑥⟩}) = (𝐹‘{⟨0, 𝑥⟩})) | |
2 | 1 | mpteq2dv 5245 | . 2 ⊢ (ℎ = 𝐹 → (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩})) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
3 | 1arymaptfv.h | . 2 ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩}))) | |
4 | eqid 2725 | . . . . 5 ⊢ (0..^1) = (0..^1) | |
5 | 4 | naryrcl 47816 | . . . 4 ⊢ (ℎ ∈ (1-aryF 𝑋) → (1 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
6 | 5 | simprd 494 | . . 3 ⊢ (ℎ ∈ (1-aryF 𝑋) → 𝑋 ∈ V) |
7 | 6 | mptexd 7232 | . 2 ⊢ (ℎ ∈ (1-aryF 𝑋) → (𝑥 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩})) ∈ V) |
8 | 2, 3, 7 | fvmpt3 7004 | 1 ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 {csn 4624 ⟨cop 4630 ↦ cmpt 5226 ‘cfv 6543 (class class class)co 7416 0cc0 11138 1c1 11139 ℕ0cn0 12502 ..^cfzo 13659 -aryF cnaryf 47811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-naryf 47812 |
This theorem is referenced by: 1arymaptf1 47827 |
Copyright terms: Public domain | W3C validator |