Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfv Structured version   Visualization version   GIF version

Theorem 1arymaptfv 48566
Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfv (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Distinct variable groups:   ,𝐹,𝑥   ,𝑋,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfv
StepHypRef Expression
1 fveq1 6904 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩}) = (𝐹‘{⟨0, 𝑥⟩}))
21mpteq2dv 5243 . 2 ( = 𝐹 → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
3 1arymaptfv.h . 2 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
4 eqid 2736 . . . . 5 (0..^1) = (0..^1)
54naryrcl 48557 . . . 4 ( ∈ (1-aryF 𝑋) → (1 ∈ ℕ0𝑋 ∈ V))
65simprd 495 . . 3 ( ∈ (1-aryF 𝑋) → 𝑋 ∈ V)
76mptexd 7245 . 2 ( ∈ (1-aryF 𝑋) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) ∈ V)
82, 3, 7fvmpt3 7019 1 (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625  cop 4631  cmpt 5224  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157  0cn0 12528  ..^cfzo 13695  -aryF cnaryf 48552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-naryf 48553
This theorem is referenced by:  1arymaptf1  48568
  Copyright terms: Public domain W3C validator