Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arymaptfv Structured version   Visualization version   GIF version

Theorem 1arymaptfv 48600
Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.)
Hypothesis
Ref Expression
1arymaptfv.h 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
Assertion
Ref Expression
1arymaptfv (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Distinct variable groups:   ,𝐹,𝑥   ,𝑋,𝑥
Allowed substitution hints:   𝐻(𝑥,)

Proof of Theorem 1arymaptfv
StepHypRef Expression
1 fveq1 6880 . . 3 ( = 𝐹 → (‘{⟨0, 𝑥⟩}) = (𝐹‘{⟨0, 𝑥⟩}))
21mpteq2dv 5220 . 2 ( = 𝐹 → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
3 1arymaptfv.h . 2 𝐻 = ( ∈ (1-aryF 𝑋) ↦ (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})))
4 eqid 2736 . . . . 5 (0..^1) = (0..^1)
54naryrcl 48591 . . . 4 ( ∈ (1-aryF 𝑋) → (1 ∈ ℕ0𝑋 ∈ V))
65simprd 495 . . 3 ( ∈ (1-aryF 𝑋) → 𝑋 ∈ V)
76mptexd 7221 . 2 ( ∈ (1-aryF 𝑋) → (𝑥𝑋 ↦ (‘{⟨0, 𝑥⟩})) ∈ V)
82, 3, 7fvmpt3 6995 1 (𝐹 ∈ (1-aryF 𝑋) → (𝐻𝐹) = (𝑥𝑋 ↦ (𝐹‘{⟨0, 𝑥⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  0cn0 12506  ..^cfzo 13676  -aryF cnaryf 48586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-naryf 48587
This theorem is referenced by:  1arymaptf1  48602
  Copyright terms: Public domain W3C validator