Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalelfv | Structured version Visualization version GIF version |
Description: The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfvalelfv | ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naryfval.i | . . . . 5 ⊢ 𝐼 = (0..^𝑁) | |
2 | 1 | naryrcl 45410 | . . . 4 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 1 | naryfvalel 45409 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
4 | 3 | biimpd 232 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
5 | 2, 4 | mpcom 38 | . . 3 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
6 | 5 | adantr 484 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
7 | simpr 488 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
8 | 1 | ovexi 7184 | . . . . . 6 ⊢ 𝐼 ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝐼 ∈ V) |
10 | 7, 9 | elmapd 8430 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐴 ∈ (𝑋 ↑m 𝐼) ↔ 𝐴:𝐼⟶𝑋)) |
11 | 10 | biimpar 481 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
12 | 2, 11 | sylan 583 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
13 | 6, 12 | ffvelrnd 6843 | 1 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 0cc0 10575 ℕ0cn0 11934 ..^cfzo 13082 -aryF cnaryf 45405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-naryf 45406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |