| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalelfv | Structured version Visualization version GIF version | ||
| Description: The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
| Ref | Expression |
|---|---|
| naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
| Ref | Expression |
|---|---|
| naryfvalelfv | ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naryfval.i | . . . . 5 ⊢ 𝐼 = (0..^𝑁) | |
| 2 | 1 | naryrcl 48593 | . . . 4 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
| 3 | 1 | naryfvalel 48592 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
| 5 | 2, 4 | mpcom 38 | . . 3 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 8 | 1 | ovexi 7403 | . . . . . 6 ⊢ 𝐼 ∈ V |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝐼 ∈ V) |
| 10 | 7, 9 | elmapd 8790 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐴 ∈ (𝑋 ↑m 𝐼) ↔ 𝐴:𝐼⟶𝑋)) |
| 11 | 10 | biimpar 477 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
| 12 | 2, 11 | sylan 580 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
| 13 | 6, 12 | ffvelcdmd 7039 | 1 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 0cc0 11044 ℕ0cn0 12418 ..^cfzo 13591 -aryF cnaryf 48588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-naryf 48589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |