Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naryfvalelfv | Structured version Visualization version GIF version |
Description: The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
Ref | Expression |
---|---|
naryfval.i | ⊢ 𝐼 = (0..^𝑁) |
Ref | Expression |
---|---|
naryfvalelfv | ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naryfval.i | . . . . 5 ⊢ 𝐼 = (0..^𝑁) | |
2 | 1 | naryrcl 45977 | . . . 4 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 1 | naryfvalel 45976 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
4 | 3 | biimpd 228 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) |
5 | 2, 4 | mpcom 38 | . . 3 ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐹:(𝑋 ↑m 𝐼)⟶𝑋) |
7 | simpr 485 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
8 | 1 | ovexi 7309 | . . . . . 6 ⊢ 𝐼 ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → 𝐼 ∈ V) |
10 | 7, 9 | elmapd 8629 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐴 ∈ (𝑋 ↑m 𝐼) ↔ 𝐴:𝐼⟶𝑋)) |
11 | 10 | biimpar 478 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
12 | 2, 11 | sylan 580 | . 2 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → 𝐴 ∈ (𝑋 ↑m 𝐼)) |
13 | 6, 12 | ffvelrnd 6962 | 1 ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 0cc0 10871 ℕ0cn0 12233 ..^cfzo 13382 -aryF cnaryf 45972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-naryf 45973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |