Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naryfvalelfv Structured version   Visualization version   GIF version

Theorem naryfvalelfv 45866
Description: The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.)
Hypothesis
Ref Expression
naryfval.i 𝐼 = (0..^𝑁)
Assertion
Ref Expression
naryfvalelfv ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼𝑋) → (𝐹𝐴) ∈ 𝑋)

Proof of Theorem naryfvalelfv
StepHypRef Expression
1 naryfval.i . . . . 5 𝐼 = (0..^𝑁)
21naryrcl 45865 . . . 4 (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0𝑋 ∈ V))
31naryfvalel 45864 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋m 𝐼)⟶𝑋))
43biimpd 228 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋m 𝐼)⟶𝑋))
52, 4mpcom 38 . . 3 (𝐹 ∈ (𝑁-aryF 𝑋) → 𝐹:(𝑋m 𝐼)⟶𝑋)
65adantr 480 . 2 ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼𝑋) → 𝐹:(𝑋m 𝐼)⟶𝑋)
7 simpr 484 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝑋 ∈ V)
81ovexi 7289 . . . . . 6 𝐼 ∈ V
98a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ V) → 𝐼 ∈ V)
107, 9elmapd 8587 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ V) → (𝐴 ∈ (𝑋m 𝐼) ↔ 𝐴:𝐼𝑋))
1110biimpar 477 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ V) ∧ 𝐴:𝐼𝑋) → 𝐴 ∈ (𝑋m 𝐼))
122, 11sylan 579 . 2 ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼𝑋) → 𝐴 ∈ (𝑋m 𝐼))
136, 12ffvelrnd 6944 1 ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼𝑋) → (𝐹𝐴) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  0cn0 12163  ..^cfzo 13311  -aryF cnaryf 45860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-naryf 45861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator