![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fv2arycl | Structured version Visualization version GIF version |
Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
Ref | Expression |
---|---|
fv2arycl | ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (0..^2) = (0..^2) | |
2 | 1 | naryrcl 47405 | . . 3 ⊢ (𝐺 ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 2aryfvalel 47421 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋)) | |
4 | simp2 1137 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺:(𝑋 ↑m {0, 1})⟶𝑋) | |
5 | c0ex 11212 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
6 | 1ex 11214 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
7 | 0ne1 12287 | . . . . . . . . . 10 ⊢ 0 ≠ 1 | |
8 | 5, 6, 7 | 3pm3.2i 1339 | . . . . . . . . 9 ⊢ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)) |
10 | fprmappr 47110 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋 ↑m {0, 1})) | |
11 | 9, 10 | syld3an2 1411 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋 ↑m {0, 1})) |
12 | 4, 11 | ffvelcdmd 7087 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋) |
13 | 12 | 3exp 1119 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0, 1})⟶𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋))) |
14 | 3, 13 | sylbid 239 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋))) |
15 | 14 | adantl 482 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋))) |
16 | 2, 15 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋)) |
17 | 16 | 3impib 1116 | 1 ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 {cpr 4630 ⟨cop 4634 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 ↑m cmap 8822 0cc0 11112 1c1 11113 2c2 12271 ℕ0cn0 12476 ..^cfzo 13631 -aryF cnaryf 47400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-naryf 47401 |
This theorem is referenced by: 2arymaptf 47426 |
Copyright terms: Public domain | W3C validator |