Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fv2arycl | Structured version Visualization version GIF version |
Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
Ref | Expression |
---|---|
fv2arycl | ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (0..^2) = (0..^2) | |
2 | 1 | naryrcl 45865 | . . 3 ⊢ (𝐺 ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 2aryfvalel 45881 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋)) | |
4 | simp2 1135 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺:(𝑋 ↑m {0, 1})⟶𝑋) | |
5 | c0ex 10900 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
6 | 1ex 10902 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
7 | 0ne1 11974 | . . . . . . . . . 10 ⊢ 0 ≠ 1 | |
8 | 5, 6, 7 | 3pm3.2i 1337 | . . . . . . . . 9 ⊢ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)) |
10 | fprmappr 45569 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) | |
11 | 9, 10 | syld3an2 1409 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) |
12 | 4, 11 | ffvelrnd 6944 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
13 | 12 | 3exp 1117 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0, 1})⟶𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
14 | 3, 13 | sylbid 239 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
15 | 14 | adantl 481 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
16 | 2, 15 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋)) |
17 | 16 | 3impib 1114 | 1 ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 {cpr 4560 〈cop 4564 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 1c1 10803 2c2 11958 ℕ0cn0 12163 ..^cfzo 13311 -aryF cnaryf 45860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-naryf 45861 |
This theorem is referenced by: 2arymaptf 45886 |
Copyright terms: Public domain | W3C validator |