Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fv2arycl | Structured version Visualization version GIF version |
Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
Ref | Expression |
---|---|
fv2arycl | ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (0..^2) = (0..^2) | |
2 | 1 | naryrcl 45678 | . . 3 ⊢ (𝐺 ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) |
3 | 2aryfvalel 45694 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋)) | |
4 | simp2 1139 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺:(𝑋 ↑m {0, 1})⟶𝑋) | |
5 | c0ex 10851 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
6 | 1ex 10853 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
7 | 0ne1 11925 | . . . . . . . . . 10 ⊢ 0 ≠ 1 | |
8 | 5, 6, 7 | 3pm3.2i 1341 | . . . . . . . . 9 ⊢ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)) |
10 | fprmappr 45382 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) | |
11 | 9, 10 | syld3an2 1413 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) |
12 | 4, 11 | ffvelrnd 6923 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
13 | 12 | 3exp 1121 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0, 1})⟶𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
14 | 3, 13 | sylbid 243 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
15 | 14 | adantl 485 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) |
16 | 2, 15 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋)) |
17 | 16 | 3impib 1118 | 1 ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2111 ≠ wne 2941 Vcvv 3420 {cpr 4557 〈cop 4561 ⟶wf 6393 ‘cfv 6397 (class class class)co 7231 ↑m cmap 8528 0cc0 10753 1c1 10754 2c2 11909 ℕ0cn0 12114 ..^cfzo 13262 -aryF cnaryf 45673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-fzo 13263 df-naryf 45674 |
This theorem is referenced by: 2arymaptf 45699 |
Copyright terms: Public domain | W3C validator |