|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fv2arycl | Structured version Visualization version GIF version | ||
| Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) | 
| Ref | Expression | 
|---|---|
| fv2arycl | ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (0..^2) = (0..^2) | |
| 2 | 1 | naryrcl 48557 | . . 3 ⊢ (𝐺 ∈ (2-aryF 𝑋) → (2 ∈ ℕ0 ∧ 𝑋 ∈ V)) | 
| 3 | 2aryfvalel 48573 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) ↔ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋)) | |
| 4 | simp2 1137 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺:(𝑋 ↑m {0, 1})⟶𝑋) | |
| 5 | c0ex 11256 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
| 6 | 1ex 11258 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
| 7 | 0ne1 12338 | . . . . . . . . . 10 ⊢ 0 ≠ 1 | |
| 8 | 5, 6, 7 | 3pm3.2i 1339 | . . . . . . . . 9 ⊢ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) | 
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)) | 
| 10 | fprmappr 48266 | . . . . . . . 8 ⊢ ((𝑋 ∈ V ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) | |
| 11 | 9, 10 | syld3an2 1412 | . . . . . . 7 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → {〈0, 𝐴〉, 〈1, 𝐵〉} ∈ (𝑋 ↑m {0, 1})) | 
| 12 | 4, 11 | ffvelcdmd 7104 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝐺:(𝑋 ↑m {0, 1})⟶𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | 
| 13 | 12 | 3exp 1119 | . . . . 5 ⊢ (𝑋 ∈ V → (𝐺:(𝑋 ↑m {0, 1})⟶𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) | 
| 14 | 3, 13 | sylbid 240 | . . . 4 ⊢ (𝑋 ∈ V → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) | 
| 15 | 14 | adantl 481 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑋 ∈ V) → (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋))) | 
| 16 | 2, 15 | mpcom 38 | . 2 ⊢ (𝐺 ∈ (2-aryF 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋)) | 
| 17 | 16 | 3impib 1116 | 1 ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 {cpr 4627 〈cop 4631 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 0cc0 11156 1c1 11157 2c2 12322 ℕ0cn0 12528 ..^cfzo 13695 -aryF cnaryf 48552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-naryf 48553 | 
| This theorem is referenced by: 2arymaptf 48578 | 
| Copyright terms: Public domain | W3C validator |