| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addasssr | Structured version Visualization version GIF version | ||
| Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addasssr | ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 10947 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | addsrpr 10966 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
| 3 | addsrpr 10966 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) | |
| 4 | addsrpr 10966 | . . 3 ⊢ ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)〉] ~R ) | |
| 5 | addsrpr 10966 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) = [〈(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))〉] ~R ) | |
| 6 | addclpr 10909 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
| 7 | addclpr 10909 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
| 8 | 6, 7 | anim12i 613 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 9 | 8 | an4s 660 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 10 | addclpr 10909 | . . . . 5 ⊢ ((𝑧 ∈ P ∧ 𝑣 ∈ P) → (𝑧 +P 𝑣) ∈ P) | |
| 11 | addclpr 10909 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑢 ∈ P) → (𝑤 +P 𝑢) ∈ P) | |
| 12 | 10, 11 | anim12i 613 | . . . 4 ⊢ (((𝑧 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑤 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
| 13 | 12 | an4s 660 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
| 14 | addasspr 10913 | . . 3 ⊢ ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)) | |
| 15 | addasspr 10913 | . . 3 ⊢ ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)) | |
| 16 | 1, 2, 3, 4, 5, 9, 13, 14, 15 | ecovass 8748 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
| 17 | dmaddsr 10976 | . . 3 ⊢ dom +R = (R × R) | |
| 18 | 0nsr 10970 | . . 3 ⊢ ¬ ∅ ∈ R | |
| 19 | 17, 18 | ndmovass 7534 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
| 20 | 16, 19 | pm2.61i 182 | 1 ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 Pcnp 10750 +P cpp 10752 ~R cer 10755 Rcnr 10756 +R cplr 10760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-plp 10874 df-ltp 10876 df-enr 10946 df-nr 10947 df-plr 10948 |
| This theorem is referenced by: map2psrpr 11001 axaddass 11047 axmulass 11048 axdistr 11049 |
| Copyright terms: Public domain | W3C validator |