![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addasssr | Structured version Visualization version GIF version |
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addasssr | ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 11054 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 11073 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ) | |
3 | addsrpr 11073 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) | |
4 | addsrpr 11073 | . . 3 ⊢ ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)⟩] ~R ) | |
5 | addsrpr 11073 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))⟩] ~R ) | |
6 | addclpr 11016 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
7 | addclpr 11016 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
8 | 6, 7 | anim12i 612 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
9 | 8 | an4s 657 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
10 | addclpr 11016 | . . . . 5 ⊢ ((𝑧 ∈ P ∧ 𝑣 ∈ P) → (𝑧 +P 𝑣) ∈ P) | |
11 | addclpr 11016 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑢 ∈ P) → (𝑤 +P 𝑢) ∈ P) | |
12 | 10, 11 | anim12i 612 | . . . 4 ⊢ (((𝑧 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑤 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
13 | 12 | an4s 657 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
14 | addasspr 11020 | . . 3 ⊢ ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)) | |
15 | addasspr 11020 | . . 3 ⊢ ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)) | |
16 | 1, 2, 3, 4, 5, 9, 13, 14, 15 | ecovass 8821 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
17 | dmaddsr 11083 | . . 3 ⊢ dom +R = (R × R) | |
18 | 0nsr 11077 | . . 3 ⊢ ¬ ∅ ∈ R | |
19 | 17, 18 | ndmovass 7598 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
20 | 16, 19 | pm2.61i 182 | 1 ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 Pcnp 10857 +P cpp 10859 ~R cer 10862 Rcnr 10863 +R cplr 10867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-ec 8708 df-qs 8712 df-ni 10870 df-pli 10871 df-mi 10872 df-lti 10873 df-plpq 10906 df-mpq 10907 df-ltpq 10908 df-enq 10909 df-nq 10910 df-erq 10911 df-plq 10912 df-mq 10913 df-1nq 10914 df-rq 10915 df-ltnq 10916 df-np 10979 df-plp 10981 df-ltp 10983 df-enr 11053 df-nr 11054 df-plr 11055 |
This theorem is referenced by: map2psrpr 11108 axaddass 11154 axmulass 11155 axdistr 11156 |
Copyright terms: Public domain | W3C validator |