MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasssr Structured version   Visualization version   GIF version

Theorem addasssr 11041
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
addasssr ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))

Proof of Theorem addasssr
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11009 . . 3 R = ((P × P) / ~R )
2 addsrpr 11028 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 11028 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
4 addsrpr 11028 . . 3 ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)⟩] ~R )
5 addsrpr 11028 . . 3 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))⟩] ~R )
6 addclpr 10971 . . . . 5 ((𝑥P𝑧P) → (𝑥 +P 𝑧) ∈ P)
7 addclpr 10971 . . . . 5 ((𝑦P𝑤P) → (𝑦 +P 𝑤) ∈ P)
86, 7anim12i 613 . . . 4 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
98an4s 660 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
10 addclpr 10971 . . . . 5 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
11 addclpr 10971 . . . . 5 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
1210, 11anim12i 613 . . . 4 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
1312an4s 660 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
14 addasspr 10975 . . 3 ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣))
15 addasspr 10975 . . 3 ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢))
161, 2, 3, 4, 5, 9, 13, 14, 15ecovass 8797 . 2 ((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
17 dmaddsr 11038 . . 3 dom +R = (R × R)
18 0nsr 11032 . . 3 ¬ ∅ ∈ R
1917, 18ndmovass 7577 . 2 (¬ (𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
2016, 19pm2.61i 182 1 ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7387  Pcnp 10812   +P cpp 10814   ~R cer 10817  Rcnr 10818   +R cplr 10822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-plp 10936  df-ltp 10938  df-enr 11008  df-nr 11009  df-plr 11010
This theorem is referenced by:  map2psrpr  11063  axaddass  11109  axmulass  11110  axdistr  11111
  Copyright terms: Public domain W3C validator