Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addasssr | Structured version Visualization version GIF version |
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addasssr | ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 10743 | . . 3 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 10762 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 10762 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) | |
4 | addsrpr 10762 | . . 3 ⊢ ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)〉] ~R ) | |
5 | addsrpr 10762 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) = [〈(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))〉] ~R ) | |
6 | addclpr 10705 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
7 | addclpr 10705 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
8 | 6, 7 | anim12i 612 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
9 | 8 | an4s 656 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
10 | addclpr 10705 | . . . . 5 ⊢ ((𝑧 ∈ P ∧ 𝑣 ∈ P) → (𝑧 +P 𝑣) ∈ P) | |
11 | addclpr 10705 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑢 ∈ P) → (𝑤 +P 𝑢) ∈ P) | |
12 | 10, 11 | anim12i 612 | . . . 4 ⊢ (((𝑧 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑤 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
13 | 12 | an4s 656 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
14 | addasspr 10709 | . . 3 ⊢ ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)) | |
15 | addasspr 10709 | . . 3 ⊢ ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)) | |
16 | 1, 2, 3, 4, 5, 9, 13, 14, 15 | ecovass 8571 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
17 | dmaddsr 10772 | . . 3 ⊢ dom +R = (R × R) | |
18 | 0nsr 10766 | . . 3 ⊢ ¬ ∅ ∈ R | |
19 | 17, 18 | ndmovass 7438 | . 2 ⊢ (¬ (𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
20 | 16, 19 | pm2.61i 182 | 1 ⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 Pcnp 10546 +P cpp 10548 ~R cer 10551 Rcnr 10552 +R cplr 10556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-plp 10670 df-ltp 10672 df-enr 10742 df-nr 10743 df-plr 10744 |
This theorem is referenced by: map2psrpr 10797 axaddass 10843 axmulass 10844 axdistr 10845 |
Copyright terms: Public domain | W3C validator |