MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf1oconst Structured version   Visualization version   GIF version

Theorem nf1oconst 7303
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.)
Assertion
Ref Expression
nf1oconst ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1-onto𝐶)

Proof of Theorem nf1oconst
StepHypRef Expression
1 nf1const 7302 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)
21orcd 873 . 2 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
3 ianor 983 . . 3 (¬ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
4 df-f1o 6543 . . 3 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
53, 4xchnxbir 333 . 2 𝐹:𝐴1-1-onto𝐶 ↔ (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
62, 5sylibr 234 1 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wcel 2109  wne 2933  {csn 4606  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-f1o 6543  df-fv 6544
This theorem is referenced by:  symgpssefmnd  19382
  Copyright terms: Public domain W3C validator