| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf1oconst | Structured version Visualization version GIF version | ||
| Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| nf1oconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf1const 7238 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) | |
| 2 | 1 | orcd 873 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
| 3 | ianor 983 | . . 3 ⊢ (¬ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | |
| 4 | df-f1o 6488 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
| 5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ 𝐹:𝐴–1-1-onto→𝐶 ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
| 6 | 2, 5 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 {csn 4576 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: symgpssefmnd 19306 |
| Copyright terms: Public domain | W3C validator |