Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf1oconst | Structured version Visualization version GIF version |
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
nf1oconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf1const 7169 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) | |
2 | 1 | orcd 869 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
3 | ianor 978 | . . 3 ⊢ (¬ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | |
4 | df-f1o 6437 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | 3, 4 | xchnxbir 332 | . 2 ⊢ (¬ 𝐹:𝐴–1-1-onto→𝐶 ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
6 | 2, 5 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 ∈ wcel 2109 ≠ wne 2944 {csn 4566 ⟶wf 6426 –1-1→wf1 6427 –onto→wfo 6428 –1-1-onto→wf1o 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-f1o 6437 df-fv 6438 |
This theorem is referenced by: symgpssefmnd 18984 |
Copyright terms: Public domain | W3C validator |