![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf1oconst | Structured version Visualization version GIF version |
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
nf1oconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf1const 7302 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) | |
2 | 1 | orcd 872 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
3 | ianor 981 | . . 3 ⊢ (¬ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | |
4 | df-f1o 6551 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ 𝐹:𝐴–1-1-onto→𝐶 ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
6 | 2, 5 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2941 {csn 4629 ⟶wf 6540 –1-1→wf1 6541 –onto→wfo 6542 –1-1-onto→wf1o 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: symgpssefmnd 19263 |
Copyright terms: Public domain | W3C validator |