|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nf1oconst | Structured version Visualization version GIF version | ||
| Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.) | 
| Ref | Expression | 
|---|---|
| nf1oconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf1const 7325 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) | |
| 2 | 1 | orcd 873 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | 
| 3 | ianor 983 | . . 3 ⊢ (¬ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | |
| 4 | df-f1o 6567 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
| 5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ 𝐹:𝐴–1-1-onto→𝐶 ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | 
| 6 | 2, 5 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2939 {csn 4625 ⟶wf 6556 –1-1→wf1 6557 –onto→wfo 6558 –1-1-onto→wf1o 6559 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-f1o 6567 df-fv 6568 | 
| This theorem is referenced by: symgpssefmnd 19414 | 
| Copyright terms: Public domain | W3C validator |