![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf1oconst | Structured version Visualization version GIF version |
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
nf1oconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf1const 7340 | . . 3 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1→𝐶) | |
2 | 1 | orcd 872 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
3 | ianor 982 | . . 3 ⊢ (¬ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶) ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) | |
4 | df-f1o 6580 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐶 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐹:𝐴–onto→𝐶)) | |
5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ 𝐹:𝐴–1-1-onto→𝐶 ↔ (¬ 𝐹:𝐴–1-1→𝐶 ∨ ¬ 𝐹:𝐴–onto→𝐶)) |
6 | 2, 5 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → ¬ 𝐹:𝐴–1-1-onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 {csn 4648 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: symgpssefmnd 19437 |
Copyright terms: Public domain | W3C validator |