MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf1oconst Structured version   Visualization version   GIF version

Theorem nf1oconst 7246
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024.)
Assertion
Ref Expression
nf1oconst ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1-onto𝐶)

Proof of Theorem nf1oconst
StepHypRef Expression
1 nf1const 7245 . . 3 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1𝐶)
21orcd 873 . 2 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
3 ianor 983 . . 3 (¬ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶) ↔ (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
4 df-f1o 6493 . . 3 (𝐹:𝐴1-1-onto𝐶 ↔ (𝐹:𝐴1-1𝐶𝐹:𝐴onto𝐶))
53, 4xchnxbir 333 . 2 𝐹:𝐴1-1-onto𝐶 ↔ (¬ 𝐹:𝐴1-1𝐶 ∨ ¬ 𝐹:𝐴onto𝐶))
62, 5sylibr 234 1 ((𝐹:𝐴⟶{𝐵} ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → ¬ 𝐹:𝐴1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wcel 2109  wne 2925  {csn 4579  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-f1o 6493  df-fv 6494
This theorem is referenced by:  symgpssefmnd  19293
  Copyright terms: Public domain W3C validator