| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6520 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 class class class wbr 5107 –1-1-onto→wf1o 6510 ‘cfv 6511 Isom wiso 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6520 |
| This theorem is referenced by: isores1 7309 isomin 7312 isoini 7313 isoini2 7314 isofrlem 7315 isoselem 7316 isofr 7317 isose 7318 isofr2 7319 isopolem 7320 isosolem 7322 weniso 7329 weisoeq 7330 weisoeq2 7331 wemoiso 7952 wemoiso2 7953 smoiso 8331 smoiso2 8338 supisolem 9425 supisoex 9426 supiso 9427 ordiso2 9468 ordtypelem10 9480 oiexg 9488 oien 9491 oismo 9493 cantnfle 9624 cantnflt2 9626 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1d 9641 cantnflem1 9642 cantnffval2 9648 cantnff1o 9649 wemapwe 9650 cnfcom3lem 9656 infxpenlem 9966 iunfictbso 10067 dfac12lem2 10098 cofsmo 10222 isf34lem3 10328 isf34lem5 10331 hsmexlem1 10379 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 pwfseqlem5 10616 fz1isolem 14426 seqcoll 14429 seqcoll2 14430 isercolllem2 15632 isercoll 15634 summolem2a 15681 prodmolem2a 15900 gsumval3lem1 19835 gsumval3 19837 ordthmeolem 23688 dvne0f1 25917 dvcvx 25925 isoun 32625 nsgqusf1o 33387 erdsze2lem1 35190 fourierdlem20 46125 fourierdlem50 46154 fourierdlem51 46155 fourierdlem52 46156 fourierdlem63 46167 fourierdlem64 46168 fourierdlem65 46169 fourierdlem76 46180 fourierdlem102 46206 fourierdlem114 46218 |
| Copyright terms: Public domain | W3C validator |