| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6495 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3044 class class class wbr 5095 –1-1-onto→wf1o 6485 ‘cfv 6486 Isom wiso 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6495 |
| This theorem is referenced by: isores1 7275 isomin 7278 isoini 7279 isoini2 7280 isofrlem 7281 isoselem 7282 isofr 7283 isose 7284 isofr2 7285 isopolem 7286 isosolem 7288 weniso 7295 weisoeq 7296 weisoeq2 7297 wemoiso 7915 wemoiso2 7916 smoiso 8292 smoiso2 8299 supisolem 9383 supisoex 9384 supiso 9385 ordiso2 9426 ordtypelem10 9438 oiexg 9446 oien 9449 oismo 9451 cantnfle 9586 cantnflt2 9588 cantnfp1lem3 9595 cantnflem1b 9601 cantnflem1d 9603 cantnflem1 9604 cantnffval2 9610 cantnff1o 9611 wemapwe 9612 cnfcom3lem 9618 infxpenlem 9926 iunfictbso 10027 dfac12lem2 10058 cofsmo 10182 isf34lem3 10288 isf34lem5 10291 hsmexlem1 10339 fpwwe2lem5 10548 fpwwe2lem6 10549 fpwwe2lem8 10551 pwfseqlem5 10576 fz1isolem 14386 seqcoll 14389 seqcoll2 14390 isercolllem2 15591 isercoll 15593 summolem2a 15640 prodmolem2a 15859 gsumval3lem1 19802 gsumval3 19804 ordthmeolem 23704 dvne0f1 25933 dvcvx 25941 isoun 32658 nsgqusf1o 33366 erdsze2lem1 35178 fourierdlem20 46112 fourierdlem50 46141 fourierdlem51 46142 fourierdlem52 46143 fourierdlem63 46154 fourierdlem64 46155 fourierdlem65 46156 fourierdlem76 46167 fourierdlem102 46193 fourierdlem114 46205 |
| Copyright terms: Public domain | W3C validator |