![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6582 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3067 class class class wbr 5166 –1-1-onto→wf1o 6572 ‘cfv 6573 Isom wiso 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6582 |
This theorem is referenced by: isores1 7370 isomin 7373 isoini 7374 isoini2 7375 isofrlem 7376 isoselem 7377 isofr 7378 isose 7379 isofr2 7380 isopolem 7381 isosolem 7383 weniso 7390 weisoeq 7391 weisoeq2 7392 wemoiso 8014 wemoiso2 8015 smoiso 8418 smoiso2 8425 supisolem 9542 supisoex 9543 supiso 9544 ordiso2 9584 ordtypelem10 9596 oiexg 9604 oien 9607 oismo 9609 cantnfle 9740 cantnflt2 9742 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1d 9757 cantnflem1 9758 cantnffval2 9764 cantnff1o 9765 wemapwe 9766 cnfcom3lem 9772 infxpenlem 10082 iunfictbso 10183 dfac12lem2 10214 cofsmo 10338 isf34lem3 10444 isf34lem5 10447 hsmexlem1 10495 fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 pwfseqlem5 10732 fz1isolem 14510 seqcoll 14513 seqcoll2 14514 isercolllem2 15714 isercoll 15716 summolem2a 15763 prodmolem2a 15982 gsumval3lem1 19947 gsumval3 19949 ordthmeolem 23830 dvne0f1 26071 dvcvx 26079 isoun 32713 nsgqusf1o 33409 erdsze2lem1 35171 fourierdlem20 46048 fourierdlem50 46077 fourierdlem51 46078 fourierdlem52 46079 fourierdlem63 46090 fourierdlem64 46091 fourierdlem65 46092 fourierdlem76 46103 fourierdlem102 46129 fourierdlem114 46141 |
Copyright terms: Public domain | W3C validator |