![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6553 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3062 class class class wbr 5149 –1-1-onto→wf1o 6543 ‘cfv 6544 Isom wiso 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-isom 6553 |
This theorem is referenced by: isores1 7331 isomin 7334 isoini 7335 isoini2 7336 isofrlem 7337 isoselem 7338 isofr 7339 isose 7340 isofr2 7341 isopolem 7342 isosolem 7344 weniso 7351 weisoeq 7352 weisoeq2 7353 wemoiso 7960 wemoiso2 7961 smoiso 8362 smoiso2 8369 supisolem 9468 supisoex 9469 supiso 9470 ordiso2 9510 ordtypelem10 9522 oiexg 9530 oien 9533 oismo 9535 cantnfle 9666 cantnflt2 9668 cantnfp1lem3 9675 cantnflem1b 9681 cantnflem1d 9683 cantnflem1 9684 cantnffval2 9690 cantnff1o 9691 wemapwe 9692 cnfcom3lem 9698 infxpenlem 10008 iunfictbso 10109 dfac12lem2 10139 cofsmo 10264 isf34lem3 10370 isf34lem5 10373 hsmexlem1 10421 fpwwe2lem5 10630 fpwwe2lem6 10631 fpwwe2lem8 10633 pwfseqlem5 10658 fz1isolem 14422 seqcoll 14425 seqcoll2 14426 isercolllem2 15612 isercoll 15614 summolem2a 15661 prodmolem2a 15878 gsumval3lem1 19773 gsumval3 19775 ordthmeolem 23305 dvne0f1 25529 dvcvx 25537 isoun 31954 nsgqusf1o 32558 erdsze2lem1 34225 fourierdlem20 44891 fourierdlem50 44920 fourierdlem51 44921 fourierdlem52 44922 fourierdlem63 44933 fourierdlem64 44934 fourierdlem65 44935 fourierdlem76 44946 fourierdlem102 44972 fourierdlem114 44984 |
Copyright terms: Public domain | W3C validator |