| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6523 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3045 class class class wbr 5110 –1-1-onto→wf1o 6513 ‘cfv 6514 Isom wiso 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6523 |
| This theorem is referenced by: isores1 7312 isomin 7315 isoini 7316 isoini2 7317 isofrlem 7318 isoselem 7319 isofr 7320 isose 7321 isofr2 7322 isopolem 7323 isosolem 7325 weniso 7332 weisoeq 7333 weisoeq2 7334 wemoiso 7955 wemoiso2 7956 smoiso 8334 smoiso2 8341 supisolem 9432 supisoex 9433 supiso 9434 ordiso2 9475 ordtypelem10 9487 oiexg 9495 oien 9498 oismo 9500 cantnfle 9631 cantnflt2 9633 cantnfp1lem3 9640 cantnflem1b 9646 cantnflem1d 9648 cantnflem1 9649 cantnffval2 9655 cantnff1o 9656 wemapwe 9657 cnfcom3lem 9663 infxpenlem 9973 iunfictbso 10074 dfac12lem2 10105 cofsmo 10229 isf34lem3 10335 isf34lem5 10338 hsmexlem1 10386 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 pwfseqlem5 10623 fz1isolem 14433 seqcoll 14436 seqcoll2 14437 isercolllem2 15639 isercoll 15641 summolem2a 15688 prodmolem2a 15907 gsumval3lem1 19842 gsumval3 19844 ordthmeolem 23695 dvne0f1 25924 dvcvx 25932 isoun 32632 nsgqusf1o 33394 erdsze2lem1 35197 fourierdlem20 46132 fourierdlem50 46161 fourierdlem51 46162 fourierdlem52 46163 fourierdlem63 46174 fourierdlem64 46175 fourierdlem65 46176 fourierdlem76 46187 fourierdlem102 46213 fourierdlem114 46225 |
| Copyright terms: Public domain | W3C validator |