Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6442 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3064 class class class wbr 5074 –1-1-onto→wf1o 6432 ‘cfv 6433 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-isom 6442 |
This theorem is referenced by: isores1 7205 isomin 7208 isoini 7209 isoini2 7210 isofrlem 7211 isoselem 7212 isofr 7213 isose 7214 isofr2 7215 isopolem 7216 isosolem 7218 weniso 7225 weisoeq 7226 weisoeq2 7227 wemoiso 7816 wemoiso2 7817 smoiso 8193 smoiso2 8200 supisolem 9232 supisoex 9233 supiso 9234 ordiso2 9274 ordtypelem10 9286 oiexg 9294 oien 9297 oismo 9299 cantnfle 9429 cantnflt2 9431 cantnfp1lem3 9438 cantnflem1b 9444 cantnflem1d 9446 cantnflem1 9447 cantnffval2 9453 cantnff1o 9454 wemapwe 9455 cnfcom3lem 9461 infxpenlem 9769 iunfictbso 9870 dfac12lem2 9900 cofsmo 10025 isf34lem3 10131 isf34lem5 10134 hsmexlem1 10182 fpwwe2lem5 10391 fpwwe2lem6 10392 fpwwe2lem8 10394 pwfseqlem5 10419 fz1isolem 14175 seqcoll 14178 seqcoll2 14179 isercolllem2 15377 isercoll 15379 summolem2a 15427 prodmolem2a 15644 gsumval3lem1 19506 gsumval3 19508 ordthmeolem 22952 dvne0f1 25176 dvcvx 25184 isoun 31034 nsgqusf1o 31601 erdsze2lem1 33165 fourierdlem20 43668 fourierdlem50 43697 fourierdlem51 43698 fourierdlem52 43699 fourierdlem63 43710 fourierdlem64 43711 fourierdlem65 43712 fourierdlem76 43723 fourierdlem102 43749 fourierdlem114 43761 |
Copyright terms: Public domain | W3C validator |