Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3063 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-isom 6427 |
This theorem is referenced by: isores1 7185 isomin 7188 isoini 7189 isoini2 7190 isofrlem 7191 isoselem 7192 isofr 7193 isose 7194 isofr2 7195 isopolem 7196 isosolem 7198 weniso 7205 weisoeq 7206 weisoeq2 7207 wemoiso 7789 wemoiso2 7790 smoiso 8164 smoiso2 8171 supisolem 9162 supisoex 9163 supiso 9164 ordiso2 9204 ordtypelem10 9216 oiexg 9224 oien 9227 oismo 9229 cantnfle 9359 cantnflt2 9361 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1d 9376 cantnflem1 9377 cantnffval2 9383 cantnff1o 9384 wemapwe 9385 cnfcom3lem 9391 infxpenlem 9700 iunfictbso 9801 dfac12lem2 9831 cofsmo 9956 isf34lem3 10062 isf34lem5 10065 hsmexlem1 10113 fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 pwfseqlem5 10350 fz1isolem 14103 seqcoll 14106 seqcoll2 14107 isercolllem2 15305 isercoll 15307 summolem2a 15355 prodmolem2a 15572 gsumval3lem1 19421 gsumval3 19423 ordthmeolem 22860 dvne0f1 25081 dvcvx 25089 isoun 30936 nsgqusf1o 31503 erdsze2lem1 33065 fourierdlem20 43558 fourierdlem50 43587 fourierdlem51 43588 fourierdlem52 43589 fourierdlem63 43600 fourierdlem64 43601 fourierdlem65 43602 fourierdlem76 43613 fourierdlem102 43639 fourierdlem114 43651 |
Copyright terms: Public domain | W3C validator |