| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6485 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3047 class class class wbr 5086 –1-1-onto→wf1o 6475 ‘cfv 6476 Isom wiso 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6485 |
| This theorem is referenced by: isores1 7263 isomin 7266 isoini 7267 isoini2 7268 isofrlem 7269 isoselem 7270 isofr 7271 isose 7272 isofr2 7273 isopolem 7274 isosolem 7276 weniso 7283 weisoeq 7284 weisoeq2 7285 wemoiso 7900 wemoiso2 7901 smoiso 8277 smoiso2 8284 supisolem 9353 supisoex 9354 supiso 9355 ordiso2 9396 ordtypelem10 9408 oiexg 9416 oien 9419 oismo 9421 cantnfle 9556 cantnflt2 9558 cantnfp1lem3 9565 cantnflem1b 9571 cantnflem1d 9573 cantnflem1 9574 cantnffval2 9580 cantnff1o 9581 wemapwe 9582 cnfcom3lem 9588 infxpenlem 9899 iunfictbso 10000 dfac12lem2 10031 cofsmo 10155 isf34lem3 10261 isf34lem5 10264 hsmexlem1 10312 fpwwe2lem5 10521 fpwwe2lem6 10522 fpwwe2lem8 10524 pwfseqlem5 10549 fz1isolem 14363 seqcoll 14366 seqcoll2 14367 isercolllem2 15568 isercoll 15570 summolem2a 15617 prodmolem2a 15836 gsumval3lem1 19812 gsumval3 19814 ordthmeolem 23711 dvne0f1 25939 dvcvx 25947 isoun 32675 nsgqusf1o 33373 erdsze2lem1 35239 fourierdlem20 46165 fourierdlem50 46194 fourierdlem51 46195 fourierdlem52 46196 fourierdlem63 46207 fourierdlem64 46208 fourierdlem65 46209 fourierdlem76 46220 fourierdlem102 46246 fourierdlem114 46258 |
| Copyright terms: Public domain | W3C validator |