| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6498 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3048 class class class wbr 5095 –1-1-onto→wf1o 6488 ‘cfv 6489 Isom wiso 6490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6498 |
| This theorem is referenced by: isores1 7277 isomin 7280 isoini 7281 isoini2 7282 isofrlem 7283 isoselem 7284 isofr 7285 isose 7286 isofr2 7287 isopolem 7288 isosolem 7290 weniso 7297 weisoeq 7298 weisoeq2 7299 wemoiso 7914 wemoiso2 7915 smoiso 8291 smoiso2 8298 supisolem 9369 supisoex 9370 supiso 9371 ordiso2 9412 ordtypelem10 9424 oiexg 9432 oien 9435 oismo 9437 cantnfle 9572 cantnflt2 9574 cantnfp1lem3 9581 cantnflem1b 9587 cantnflem1d 9589 cantnflem1 9590 cantnffval2 9596 cantnff1o 9597 wemapwe 9598 cnfcom3lem 9604 infxpenlem 9915 iunfictbso 10016 dfac12lem2 10047 cofsmo 10171 isf34lem3 10277 isf34lem5 10280 hsmexlem1 10328 fpwwe2lem5 10537 fpwwe2lem6 10538 fpwwe2lem8 10540 pwfseqlem5 10565 fz1isolem 14375 seqcoll 14378 seqcoll2 14379 isercolllem2 15580 isercoll 15582 summolem2a 15629 prodmolem2a 15848 gsumval3lem1 19825 gsumval3 19827 ordthmeolem 23736 dvne0f1 25964 dvcvx 25972 isoun 32707 nsgqusf1o 33425 erdsze2lem1 35319 fourierdlem20 46287 fourierdlem50 46316 fourierdlem51 46317 fourierdlem52 46318 fourierdlem63 46329 fourierdlem64 46330 fourierdlem65 46331 fourierdlem76 46342 fourierdlem102 46368 fourierdlem114 46380 |
| Copyright terms: Public domain | W3C validator |