| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6539 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3051 class class class wbr 5119 –1-1-onto→wf1o 6529 ‘cfv 6530 Isom wiso 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6539 |
| This theorem is referenced by: isores1 7326 isomin 7329 isoini 7330 isoini2 7331 isofrlem 7332 isoselem 7333 isofr 7334 isose 7335 isofr2 7336 isopolem 7337 isosolem 7339 weniso 7346 weisoeq 7347 weisoeq2 7348 wemoiso 7970 wemoiso2 7971 smoiso 8374 smoiso2 8381 supisolem 9484 supisoex 9485 supiso 9486 ordiso2 9527 ordtypelem10 9539 oiexg 9547 oien 9550 oismo 9552 cantnfle 9683 cantnflt2 9685 cantnfp1lem3 9692 cantnflem1b 9698 cantnflem1d 9700 cantnflem1 9701 cantnffval2 9707 cantnff1o 9708 wemapwe 9709 cnfcom3lem 9715 infxpenlem 10025 iunfictbso 10126 dfac12lem2 10157 cofsmo 10281 isf34lem3 10387 isf34lem5 10390 hsmexlem1 10438 fpwwe2lem5 10647 fpwwe2lem6 10648 fpwwe2lem8 10650 pwfseqlem5 10675 fz1isolem 14477 seqcoll 14480 seqcoll2 14481 isercolllem2 15680 isercoll 15682 summolem2a 15729 prodmolem2a 15948 gsumval3lem1 19884 gsumval3 19886 ordthmeolem 23737 dvne0f1 25967 dvcvx 25975 isoun 32625 nsgqusf1o 33377 erdsze2lem1 35171 fourierdlem20 46104 fourierdlem50 46133 fourierdlem51 46134 fourierdlem52 46135 fourierdlem63 46146 fourierdlem64 46147 fourierdlem65 46148 fourierdlem76 46159 fourierdlem102 46185 fourierdlem114 46197 |
| Copyright terms: Public domain | W3C validator |