| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 6540 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3051 class class class wbr 5119 –1-1-onto→wf1o 6530 ‘cfv 6531 Isom wiso 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6540 |
| This theorem is referenced by: isores1 7327 isomin 7330 isoini 7331 isoini2 7332 isofrlem 7333 isoselem 7334 isofr 7335 isose 7336 isofr2 7337 isopolem 7338 isosolem 7340 weniso 7347 weisoeq 7348 weisoeq2 7349 wemoiso 7972 wemoiso2 7973 smoiso 8376 smoiso2 8383 supisolem 9486 supisoex 9487 supiso 9488 ordiso2 9529 ordtypelem10 9541 oiexg 9549 oien 9552 oismo 9554 cantnfle 9685 cantnflt2 9687 cantnfp1lem3 9694 cantnflem1b 9700 cantnflem1d 9702 cantnflem1 9703 cantnffval2 9709 cantnff1o 9710 wemapwe 9711 cnfcom3lem 9717 infxpenlem 10027 iunfictbso 10128 dfac12lem2 10159 cofsmo 10283 isf34lem3 10389 isf34lem5 10392 hsmexlem1 10440 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 pwfseqlem5 10677 fz1isolem 14479 seqcoll 14482 seqcoll2 14483 isercolllem2 15682 isercoll 15684 summolem2a 15731 prodmolem2a 15950 gsumval3lem1 19886 gsumval3 19888 ordthmeolem 23739 dvne0f1 25969 dvcvx 25977 isoun 32679 nsgqusf1o 33431 erdsze2lem1 35225 fourierdlem20 46156 fourierdlem50 46185 fourierdlem51 46186 fourierdlem52 46187 fourierdlem63 46198 fourierdlem64 46199 fourierdlem65 46200 fourierdlem76 46211 fourierdlem102 46237 fourierdlem114 46249 |
| Copyright terms: Public domain | W3C validator |