![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6572 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wral 3059 class class class wbr 5148 –1-1-onto→wf1o 6562 ‘cfv 6563 Isom wiso 6564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-isom 6572 |
This theorem is referenced by: isores1 7354 isomin 7357 isoini 7358 isoini2 7359 isofrlem 7360 isoselem 7361 isofr 7362 isose 7363 isofr2 7364 isopolem 7365 isosolem 7367 weniso 7374 weisoeq 7375 weisoeq2 7376 wemoiso 7997 wemoiso2 7998 smoiso 8401 smoiso2 8408 supisolem 9511 supisoex 9512 supiso 9513 ordiso2 9553 ordtypelem10 9565 oiexg 9573 oien 9576 oismo 9578 cantnfle 9709 cantnflt2 9711 cantnfp1lem3 9718 cantnflem1b 9724 cantnflem1d 9726 cantnflem1 9727 cantnffval2 9733 cantnff1o 9734 wemapwe 9735 cnfcom3lem 9741 infxpenlem 10051 iunfictbso 10152 dfac12lem2 10183 cofsmo 10307 isf34lem3 10413 isf34lem5 10416 hsmexlem1 10464 fpwwe2lem5 10673 fpwwe2lem6 10674 fpwwe2lem8 10676 pwfseqlem5 10701 fz1isolem 14497 seqcoll 14500 seqcoll2 14501 isercolllem2 15699 isercoll 15701 summolem2a 15748 prodmolem2a 15967 gsumval3lem1 19938 gsumval3 19940 ordthmeolem 23825 dvne0f1 26066 dvcvx 26074 isoun 32717 nsgqusf1o 33424 erdsze2lem1 35188 fourierdlem20 46083 fourierdlem50 46112 fourierdlem51 46113 fourierdlem52 46114 fourierdlem63 46125 fourierdlem64 46126 fourierdlem65 46127 fourierdlem76 46138 fourierdlem102 46164 fourierdlem114 46176 |
Copyright terms: Public domain | W3C validator |