![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 6550 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wral 3062 class class class wbr 5148 –1-1-onto→wf1o 6540 ‘cfv 6541 Isom wiso 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-isom 6550 |
This theorem is referenced by: isores1 7328 isomin 7331 isoini 7332 isoini2 7333 isofrlem 7334 isoselem 7335 isofr 7336 isose 7337 isofr2 7338 isopolem 7339 isosolem 7341 weniso 7348 weisoeq 7349 weisoeq2 7350 wemoiso 7957 wemoiso2 7958 smoiso 8359 smoiso2 8366 supisolem 9465 supisoex 9466 supiso 9467 ordiso2 9507 ordtypelem10 9519 oiexg 9527 oien 9530 oismo 9532 cantnfle 9663 cantnflt2 9665 cantnfp1lem3 9672 cantnflem1b 9678 cantnflem1d 9680 cantnflem1 9681 cantnffval2 9687 cantnff1o 9688 wemapwe 9689 cnfcom3lem 9695 infxpenlem 10005 iunfictbso 10106 dfac12lem2 10136 cofsmo 10261 isf34lem3 10367 isf34lem5 10370 hsmexlem1 10418 fpwwe2lem5 10627 fpwwe2lem6 10628 fpwwe2lem8 10630 pwfseqlem5 10655 fz1isolem 14419 seqcoll 14422 seqcoll2 14423 isercolllem2 15609 isercoll 15611 summolem2a 15658 prodmolem2a 15875 gsumval3lem1 19768 gsumval3 19770 ordthmeolem 23297 dvne0f1 25521 dvcvx 25529 isoun 31911 nsgqusf1o 32516 erdsze2lem1 34183 fourierdlem20 44830 fourierdlem50 44859 fourierdlem51 44860 fourierdlem52 44861 fourierdlem63 44872 fourierdlem64 44873 fourierdlem65 44874 fourierdlem76 44885 fourierdlem102 44911 fourierdlem114 44923 |
Copyright terms: Public domain | W3C validator |