![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpdsr | Structured version Visualization version GIF version |
Description: Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpds.n | β’ π = (normβπΊ) |
ngpds.x | β’ π = (BaseβπΊ) |
ngpds.m | β’ β = (-gβπΊ) |
ngpds.d | β’ π· = (distβπΊ) |
Ref | Expression |
---|---|
ngpdsr | β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΅ β π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpxms 24434 | . . 3 β’ (πΊ β NrmGrp β πΊ β βMetSp) | |
2 | ngpds.x | . . . 4 β’ π = (BaseβπΊ) | |
3 | ngpds.d | . . . 4 β’ π· = (distβπΊ) | |
4 | 2, 3 | xmssym 24295 | . . 3 β’ ((πΊ β βMetSp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΅π·π΄)) |
5 | 1, 4 | syl3an1 1160 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΅π·π΄)) |
6 | ngpds.n | . . . 4 β’ π = (normβπΊ) | |
7 | ngpds.m | . . . 4 β’ β = (-gβπΊ) | |
8 | 6, 2, 7, 3 | ngpds 24437 | . . 3 β’ ((πΊ β NrmGrp β§ π΅ β π β§ π΄ β π) β (π΅π·π΄) = (πβ(π΅ β π΄))) |
9 | 8 | 3com23 1123 | . 2 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΅π·π΄) = (πβ(π΅ β π΄))) |
10 | 5, 9 | eqtrd 2764 | 1 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΅ β π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6534 (class class class)co 7402 Basecbs 17145 distcds 17207 -gcsg 18857 βMetSpcxms 24147 normcnm 24409 NrmGrpcngp 24410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-n0 12471 df-z 12557 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-0g 17388 df-topgen 17390 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-top 22720 df-topon 22737 df-topsp 22759 df-bases 22773 df-xms 24150 df-ms 24151 df-nm 24415 df-ngp 24416 |
This theorem is referenced by: ngpinvds 24446 nminv 24454 nlmvscnlem2 24526 nrginvrcnlem 24532 ngpocelbl 24545 ipcnlem2 25096 minveclem2 25278 qqhcn 33463 qqhucn 33464 |
Copyright terms: Public domain | W3C validator |