MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmeq0 Structured version   Visualization version   GIF version

Theorem nmeq0 24513
Description: The identity is the only element of the group with zero norm. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmeq0.z 0 = (0g𝐺)
Assertion
Ref Expression
nmeq0 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))

Proof of Theorem nmeq0
StepHypRef Expression
1 nmf.n . . . . 5 𝑁 = (norm‘𝐺)
2 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
3 nmeq0.z . . . . 5 0 = (0g𝐺)
4 eqid 2730 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
51, 2, 3, 4nmval 24484 . . . 4 (𝐴𝑋 → (𝑁𝐴) = (𝐴(dist‘𝐺) 0 ))
65adantl 481 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴(dist‘𝐺) 0 ))
76eqeq1d 2732 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ (𝐴(dist‘𝐺) 0 ) = 0))
8 ngpgrp 24494 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
98adantr 480 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
102, 3grpidcl 18904 . . . 4 (𝐺 ∈ Grp → 0𝑋)
119, 10syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 0𝑋)
12 ngpxms 24496 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
132, 4xmseq0 24359 . . . 4 ((𝐺 ∈ ∞MetSp ∧ 𝐴𝑋0𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
1412, 13syl3an1 1163 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋0𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
1511, 14mpd3an3 1464 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
167, 15bitrd 279 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  0cc0 11075  Basecbs 17186  distcds 17236  0gc0g 17409  Grpcgrp 18872  ∞MetSpcxms 24212  normcnm 24471  NrmGrpcngp 24472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478
This theorem is referenced by:  nmne0  24514  ngpi  24523  nm0  24524  nmgt0  24525  tngngp  24549  tngngp3  24551  nlmmul0or  24578  nmoeq0  24631  ncvs1  25064
  Copyright terms: Public domain W3C validator