Step | Hyp | Ref
| Expression |
1 | | qqhucn.2 |
. . . 4
β’ (π β π
β DivRing) |
2 | | qqhucn.4 |
. . . 4
β’ (π β (chrβπ
) = 0) |
3 | | qqhucn.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
4 | | eqid 2736 |
. . . . 5
β’
(/rβπ
) = (/rβπ
) |
5 | | eqid 2736 |
. . . . 5
β’
(β€RHomβπ
) = (β€RHomβπ
) |
6 | 3, 4, 5 | qqhf 32507 |
. . . 4
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βHomβπ
):ββΆπ΅) |
7 | 1, 2, 6 | syl2anc 584 |
. . 3
β’ (π β (βHomβπ
):ββΆπ΅) |
8 | | simpr 485 |
. . . . 5
β’ ((π β§ π β β+) β π β
β+) |
9 | | qqhucn.1 |
. . . . . . . . . . . . . . 15
β’ (π β π
β NrmRing) |
10 | | nrgngp 24024 |
. . . . . . . . . . . . . . 15
β’ (π
β NrmRing β π
β NrmGrp) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π
β NrmGrp) |
12 | 11 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β π
β NrmGrp) |
13 | 7 | ffvelcdmda 7034 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β) β
((βHomβπ
)βπ) β π΅) |
14 | 13 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β
((βHomβπ
)βπ) β π΅) |
15 | 7 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β β) β
(βHomβπ
):ββΆπ΅) |
16 | 15 | ffvelcdmda 7034 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β
((βHomβπ
)βπ) β π΅) |
17 | | eqid 2736 |
. . . . . . . . . . . . . 14
β’
(normβπ
) =
(normβπ
) |
18 | | eqid 2736 |
. . . . . . . . . . . . . 14
β’
(-gβπ
) = (-gβπ
) |
19 | | eqid 2736 |
. . . . . . . . . . . . . 14
β’
(distβπ
) =
(distβπ
) |
20 | 17, 3, 18, 19 | ngpdsr 23959 |
. . . . . . . . . . . . 13
β’ ((π
β NrmGrp β§
((βHomβπ
)βπ) β π΅ β§ ((βHomβπ
)βπ) β π΅) β (((βHomβπ
)βπ)(distβπ
)((βHomβπ
)βπ)) = ((normβπ
)β(((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ)))) |
21 | 12, 14, 16, 20 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β
(((βHomβπ
)βπ)(distβπ
)((βHomβπ
)βπ)) = ((normβπ
)β(((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ)))) |
22 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β) β§ π β β) β π β β) |
23 | | simplr 767 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β β) β§ π β β) β π β β) |
24 | | qsubdrg 20847 |
. . . . . . . . . . . . . . . . . . 19
β’ (β
β (SubRingββfld) β§ (βfld
βΎs β) β DivRing) |
25 | 24 | simpli 484 |
. . . . . . . . . . . . . . . . . 18
β’ β
β (SubRingββfld) |
26 | | subrgsubg 20226 |
. . . . . . . . . . . . . . . . . 18
β’ (β
β (SubRingββfld) β β β
(SubGrpββfld)) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
β’ β
β (SubGrpββfld) |
28 | | cnfldsub 20823 |
. . . . . . . . . . . . . . . . . 18
β’ β
= (-gββfld) |
29 | | qqhucn.q |
. . . . . . . . . . . . . . . . . 18
β’ π = (βfld
βΎs β) |
30 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
β’
(-gβπ) = (-gβπ) |
31 | 28, 29, 30 | subgsub 18938 |
. . . . . . . . . . . . . . . . 17
β’ ((β
β (SubGrpββfld) β§ π β β β§ π β β) β (π β π) = (π(-gβπ)π)) |
32 | 27, 31 | mp3an1 1448 |
. . . . . . . . . . . . . . . 16
β’ ((π β β β§ π β β) β (π β π) = (π(-gβπ)π)) |
33 | 22, 23, 32 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β) β§ π β β) β (π β π) = (π(-gβπ)π)) |
34 | 33 | fveq2d 6846 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β) β§ π β β) β
((βHomβπ
)β(π β π)) = ((βHomβπ
)β(π(-gβπ)π))) |
35 | 3, 4, 5, 29 | qqhghm 32509 |
. . . . . . . . . . . . . . . . 17
β’ ((π
β DivRing β§
(chrβπ
) = 0) β
(βHomβπ
) β
(π GrpHom π
)) |
36 | 1, 2, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (π β (βHomβπ
) β (π GrpHom π
)) |
37 | 36 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β β) β§ π β β) β
(βHomβπ
) β
(π GrpHom π
)) |
38 | 29 | qrngbas 26965 |
. . . . . . . . . . . . . . . 16
β’ β =
(Baseβπ) |
39 | 38, 30, 18 | ghmsub 19014 |
. . . . . . . . . . . . . . 15
β’
(((βHomβπ
) β (π GrpHom π
) β§ π β β β§ π β β) β
((βHomβπ
)β(π(-gβπ)π)) = (((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ))) |
40 | 37, 22, 23, 39 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β β) β§ π β β) β
((βHomβπ
)β(π(-gβπ)π)) = (((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ))) |
41 | 34, 40 | eqtr2d 2777 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β
(((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ)) = ((βHomβπ
)β(π β π))) |
42 | 41 | fveq2d 6846 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β ((normβπ
)β(((βHomβπ
)βπ)(-gβπ
)((βHomβπ
)βπ))) = ((normβπ
)β((βHomβπ
)β(π β π)))) |
43 | 9, 1 | elind 4154 |
. . . . . . . . . . . . . 14
β’ (π β π
β (NrmRing β©
DivRing)) |
44 | 43 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β π
β (NrmRing β©
DivRing)) |
45 | | qqhucn.3 |
. . . . . . . . . . . . . 14
β’ (π β π β NrmMod) |
46 | 45 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β π β NrmMod) |
47 | 2 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β (chrβπ
) = 0) |
48 | | qsubcl 12892 |
. . . . . . . . . . . . . 14
β’ ((π β β β§ π β β) β (π β π) β β) |
49 | 22, 23, 48 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β (π β π) β β) |
50 | | qqhucn.z |
. . . . . . . . . . . . . 14
β’ π = (β€Modβπ
) |
51 | 17, 50 | qqhnm 32511 |
. . . . . . . . . . . . 13
β’ (((π
β (NrmRing β© DivRing)
β§ π β NrmMod β§
(chrβπ
) = 0) β§
(π β π) β β) β
((normβπ
)β((βHomβπ
)β(π β π))) = (absβ(π β π))) |
52 | 44, 46, 47, 49, 51 | syl31anc 1373 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β ((normβπ
)β((βHomβπ
)β(π β π))) = (absβ(π β π))) |
53 | 21, 42, 52 | 3eqtrd 2780 |
. . . . . . . . . . 11
β’ (((π β§ π β β) β§ π β β) β
(((βHomβπ
)βπ)(distβπ
)((βHomβπ
)βπ)) = (absβ(π β π))) |
54 | 14, 16 | ovresd 7520 |
. . . . . . . . . . 11
β’ (((π β§ π β β) β§ π β β) β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) = (((βHomβπ
)βπ)(distβπ
)((βHomβπ
)βπ))) |
55 | | qsscn 12884 |
. . . . . . . . . . . . . 14
β’ β
β β |
56 | 55, 23 | sselid 3942 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β π β β) |
57 | 55, 22 | sselid 3942 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β) β§ π β β) β π β β) |
58 | | eqid 2736 |
. . . . . . . . . . . . . 14
β’ (abs
β β ) = (abs β β ) |
59 | 58 | cnmetdval 24132 |
. . . . . . . . . . . . 13
β’ ((π β β β§ π β β) β (π(abs β β )π) = (absβ(π β π))) |
60 | 56, 57, 59 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β (π(abs β β )π) = (absβ(π β π))) |
61 | 23, 22 | ovresd 7520 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β (π((abs β β ) βΎ (β
Γ β))π) =
(π(abs β β
)π)) |
62 | 57, 56 | abssubd 15337 |
. . . . . . . . . . . 12
β’ (((π β§ π β β) β§ π β β) β (absβ(π β π)) = (absβ(π β π))) |
63 | 60, 61, 62 | 3eqtr4d 2786 |
. . . . . . . . . . 11
β’ (((π β§ π β β) β§ π β β) β (π((abs β β ) βΎ (β
Γ β))π) =
(absβ(π β π))) |
64 | 53, 54, 63 | 3eqtr4rd 2787 |
. . . . . . . . . 10
β’ (((π β§ π β β) β§ π β β) β (π((abs β β ) βΎ (β
Γ β))π) =
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ))) |
65 | 64 | breq1d 5115 |
. . . . . . . . 9
β’ (((π β§ π β β) β§ π β β) β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
66 | 65 | biimpd 228 |
. . . . . . . 8
β’ (((π β§ π β β) β§ π β β) β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
67 | 66 | ralrimiva 3143 |
. . . . . . 7
β’ ((π β§ π β β) β βπ β β ((π((abs β β ) βΎ
(β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
68 | 67 | ralrimiva 3143 |
. . . . . 6
β’ (π β βπ β β βπ β β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
69 | 68 | adantr 481 |
. . . . 5
β’ ((π β§ π β β+) β
βπ β β
βπ β β
((π((abs β β )
βΎ (β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
70 | | breq2 5109 |
. . . . . . . 8
β’ (π = π β ((π((abs β β ) βΎ (β
Γ β))π) <
π β (π((abs β β ) βΎ
(β Γ β))π) < π)) |
71 | 70 | imbi1d 341 |
. . . . . . 7
β’ (π = π β (((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π) β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π))) |
72 | 71 | 2ralbidv 3212 |
. . . . . 6
β’ (π = π β (βπ β β βπ β β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π) β βπ β β βπ β β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π))) |
73 | 72 | rspcev 3581 |
. . . . 5
β’ ((π β β+
β§ βπ β
β βπ β
β ((π((abs β
β ) βΎ (β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) β βπ β β+ βπ β β βπ β β ((π((abs β β ) βΎ
(β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
74 | 8, 69, 73 | syl2anc 584 |
. . . 4
β’ ((π β§ π β β+) β
βπ β
β+ βπ β β βπ β β ((π((abs β β ) βΎ (β
Γ β))π) <
π β
(((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
75 | 74 | ralrimiva 3143 |
. . 3
β’ (π β βπ β β+ βπ β β+
βπ β β
βπ β β
((π((abs β β )
βΎ (β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)) |
76 | | eqid 2736 |
. . . 4
β’
(metUnifβ((abs β β ) βΎ (β Γ
β))) = (metUnifβ((abs β β ) βΎ (β Γ
β))) |
77 | | qqhucn.v |
. . . 4
β’ π =
(metUnifβ((distβπ
) βΎ (π΅ Γ π΅))) |
78 | | 0z 12509 |
. . . . . 6
β’ 0 β
β€ |
79 | | zq 12878 |
. . . . . 6
β’ (0 β
β€ β 0 β β) |
80 | | ne0i 4294 |
. . . . . 6
β’ (0 β
β β β β β
) |
81 | 78, 79, 80 | mp2b 10 |
. . . . 5
β’ β
β β
|
82 | 81 | a1i 11 |
. . . 4
β’ (π β β β
β
) |
83 | | drngring 20190 |
. . . . 5
β’ (π
β DivRing β π
β Ring) |
84 | | eqid 2736 |
. . . . . 6
β’
(1rβπ
) = (1rβπ
) |
85 | 3, 84 | ringidcl 19987 |
. . . . 5
β’ (π
β Ring β
(1rβπ
)
β π΅) |
86 | | ne0i 4294 |
. . . . 5
β’
((1rβπ
) β π΅ β π΅ β β
) |
87 | 1, 83, 85, 86 | 4syl 19 |
. . . 4
β’ (π β π΅ β β
) |
88 | | cnfldxms 24138 |
. . . . . . . 8
β’
βfld β βMetSp |
89 | | qex 12885 |
. . . . . . . 8
β’ β
β V |
90 | | ressxms 23879 |
. . . . . . . 8
β’
((βfld β βMetSp β§ β β V)
β (βfld βΎs β) β
βMetSp) |
91 | 88, 89, 90 | mp2an 690 |
. . . . . . 7
β’
(βfld βΎs β) β
βMetSp |
92 | 29, 91 | eqeltri 2834 |
. . . . . 6
β’ π β
βMetSp |
93 | | cnfldds 20804 |
. . . . . . . . 9
β’ (abs
β β ) = (distββfld) |
94 | 29, 93 | ressds 17290 |
. . . . . . . 8
β’ (β
β V β (abs β β ) = (distβπ)) |
95 | 89, 94 | ax-mp 5 |
. . . . . . 7
β’ (abs
β β ) = (distβπ) |
96 | 38, 95 | xmsxmet2 23810 |
. . . . . 6
β’ (π β βMetSp β
((abs β β ) βΎ (β Γ β)) β
(βMetββ)) |
97 | 92, 96 | mp1i 13 |
. . . . 5
β’ (π β ((abs β β )
βΎ (β Γ β)) β
(βMetββ)) |
98 | | xmetpsmet 23699 |
. . . . 5
β’ (((abs
β β ) βΎ (β Γ β)) β
(βMetββ) β ((abs β β ) βΎ (β
Γ β)) β (PsMetββ)) |
99 | 97, 98 | syl 17 |
. . . 4
β’ (π β ((abs β β )
βΎ (β Γ β)) β
(PsMetββ)) |
100 | | ngpxms 23955 |
. . . . . 6
β’ (π
β NrmGrp β π
β
βMetSp) |
101 | 3, 19 | xmsxmet2 23810 |
. . . . . 6
β’ (π
β βMetSp β
((distβπ
) βΎ
(π΅ Γ π΅)) β
(βMetβπ΅)) |
102 | 9, 10, 100, 101 | 4syl 19 |
. . . . 5
β’ (π β ((distβπ
) βΎ (π΅ Γ π΅)) β (βMetβπ΅)) |
103 | | xmetpsmet 23699 |
. . . . 5
β’
(((distβπ
)
βΎ (π΅ Γ π΅)) β
(βMetβπ΅) β
((distβπ
) βΎ
(π΅ Γ π΅)) β (PsMetβπ΅)) |
104 | 102, 103 | syl 17 |
. . . 4
β’ (π β ((distβπ
) βΎ (π΅ Γ π΅)) β (PsMetβπ΅)) |
105 | 76, 77, 82, 87, 99, 104 | metucn 23925 |
. . 3
β’ (π β ((βHomβπ
) β ((metUnifβ((abs
β β ) βΎ (β Γ β))) Cnuπ) β
((βHomβπ
):ββΆπ΅ β§ βπ β β+ βπ β β+
βπ β β
βπ β β
((π((abs β β )
βΎ (β Γ β))π) < π β (((βHomβπ
)βπ)((distβπ
) βΎ (π΅ Γ π΅))((βHomβπ
)βπ)) < π)))) |
106 | 7, 75, 105 | mpbir2and 711 |
. 2
β’ (π β (βHomβπ
) β ((metUnifβ((abs
β β ) βΎ (β Γ β))) Cnuπ)) |
107 | | qqhucn.u |
. . . . . 6
β’ π = (UnifStβπ) |
108 | 29 | fveq2i 6845 |
. . . . . 6
β’
(UnifStβπ) =
(UnifStβ(βfld βΎs
β)) |
109 | | ressuss 23612 |
. . . . . . 7
β’ (β
β V β (UnifStβ(βfld βΎs
β)) = ((UnifStββfld) βΎt (β
Γ β))) |
110 | 89, 109 | ax-mp 5 |
. . . . . 6
β’
(UnifStβ(βfld βΎs β)) =
((UnifStββfld) βΎt (β Γ
β)) |
111 | 107, 108,
110 | 3eqtri 2768 |
. . . . 5
β’ π =
((UnifStββfld) βΎt (β Γ
β)) |
112 | | eqid 2736 |
. . . . . . 7
β’
(UnifStββfld) =
(UnifStββfld) |
113 | 112 | cnflduss 24718 |
. . . . . 6
β’
(UnifStββfld) = (metUnifβ(abs β
β )) |
114 | 113 | oveq1i 7366 |
. . . . 5
β’
((UnifStββfld) βΎt (β
Γ β)) = ((metUnifβ(abs β β )) βΎt
(β Γ β)) |
115 | | cnxmet 24134 |
. . . . . . 7
β’ (abs
β β ) β (βMetββ) |
116 | | xmetpsmet 23699 |
. . . . . . 7
β’ ((abs
β β ) β (βMetββ) β (abs β β
) β (PsMetββ)) |
117 | 115, 116 | ax-mp 5 |
. . . . . 6
β’ (abs
β β ) β (PsMetββ) |
118 | | restmetu 23924 |
. . . . . 6
β’ ((β
β β
β§ (abs β β ) β (PsMetββ) β§
β β β) β ((metUnifβ(abs β β ))
βΎt (β Γ β)) = (metUnifβ((abs β
β ) βΎ (β Γ β)))) |
119 | 81, 117, 55, 118 | mp3an 1461 |
. . . . 5
β’
((metUnifβ(abs β β )) βΎt (β
Γ β)) = (metUnifβ((abs β β ) βΎ (β
Γ β))) |
120 | 111, 114,
119 | 3eqtri 2768 |
. . . 4
β’ π = (metUnifβ((abs β
β ) βΎ (β Γ β))) |
121 | 120 | a1i 11 |
. . 3
β’ (π β π = (metUnifβ((abs β β )
βΎ (β Γ β)))) |
122 | 121 | oveq1d 7371 |
. 2
β’ (π β (π Cnuπ) = ((metUnifβ((abs β β )
βΎ (β Γ β))) Cnuπ)) |
123 | 106, 122 | eleqtrrd 2841 |
1
β’ (π β (βHomβπ
) β (π Cnuπ)) |