Step | Hyp | Ref
| Expression |
1 | | qqhucn.2 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ DivRing) |
2 | | qqhucn.4 |
. . . 4
⊢ (𝜑 → (chr‘𝑅) = 0) |
3 | | qqhucn.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
4 | | eqid 2738 |
. . . . 5
⊢
(/r‘𝑅) = (/r‘𝑅) |
5 | | eqid 2738 |
. . . . 5
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
6 | 3, 4, 5 | qqhf 31836 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
7 | 1, 2, 6 | syl2anc 583 |
. . 3
⊢ (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵) |
8 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ+) |
9 | | qqhucn.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ NrmRing) |
10 | | nrgngp 23732 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ NrmGrp) |
12 | 11 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp) |
13 | 7 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵) |
14 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵) |
15 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
16 | 15 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) |
17 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(norm‘𝑅) =
(norm‘𝑅) |
18 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(-g‘𝑅) = (-g‘𝑅) |
19 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(dist‘𝑅) =
(dist‘𝑅) |
20 | 17, 3, 18, 19 | ngpdsr 23667 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ NrmGrp ∧
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)))) |
21 | 12, 14, 16, 20 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)))) |
22 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ) |
23 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ) |
24 | | qsubdrg 20562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
25 | 24 | simpli 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
∈ (SubRing‘ℂfld) |
26 | | subrgsubg 19945 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℚ
∈ (SubRing‘ℂfld) → ℚ ∈
(SubGrp‘ℂfld)) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ℚ
∈ (SubGrp‘ℂfld) |
28 | | cnfldsub 20538 |
. . . . . . . . . . . . . . . . . 18
⊢ −
= (-g‘ℂfld) |
29 | | qqhucn.q |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑄 = (ℂfld
↾s ℚ) |
30 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(-g‘𝑄) = (-g‘𝑄) |
31 | 28, 29, 30 | subgsub 18682 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℚ
∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
32 | 27, 31 | mp3an1 1446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
33 | 22, 23, 32 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
34 | 33 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞 − 𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝))) |
35 | 3, 4, 5, 29 | qqhghm 31838 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅) ∈
(𝑄 GrpHom 𝑅)) |
36 | 1, 2, 35 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) |
37 | 36 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(ℚHom‘𝑅) ∈
(𝑄 GrpHom 𝑅)) |
38 | 29 | qrngbas 26672 |
. . . . . . . . . . . . . . . 16
⊢ ℚ =
(Base‘𝑄) |
39 | 38, 30, 18 | ghmsub 18757 |
. . . . . . . . . . . . . . 15
⊢
(((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) |
40 | 37, 22, 23, 39 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) |
41 | 34, 40 | eqtr2d 2779 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞 − 𝑝))) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝)))) |
43 | 9, 1 | elind 4124 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ (NrmRing ∩
DivRing)) |
44 | 43 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩
DivRing)) |
45 | | qqhucn.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ NrmMod) |
46 | 45 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod) |
47 | 2 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0) |
48 | | qsubcl 12637 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) ∈ ℚ) |
49 | 22, 23, 48 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞 − 𝑝) ∈ ℚ) |
50 | | qqhucn.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 = (ℤMod‘𝑅) |
51 | 17, 50 | qqhnm 31840 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ (NrmRing ∩ DivRing)
∧ 𝑍 ∈ NrmMod ∧
(chr‘𝑅) = 0) ∧
(𝑞 − 𝑝) ∈ ℚ) →
((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝))) = (abs‘(𝑞 − 𝑝))) |
52 | 44, 46, 47, 49, 51 | syl31anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝))) = (abs‘(𝑞 − 𝑝))) |
53 | 21, 42, 52 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞 − 𝑝))) |
54 | 14, 16 | ovresd 7417 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞))) |
55 | | qsscn 12629 |
. . . . . . . . . . . . . 14
⊢ ℚ
⊆ ℂ |
56 | 55, 23 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ) |
57 | 55, 22 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ) |
58 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (abs
∘ − ) = (abs ∘ − ) |
59 | 58 | cnmetdval 23840 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝 − 𝑞))) |
60 | 56, 57, 59 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝 − 𝑞))) |
61 | 23, 22 | ovresd 7417 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(𝑝(abs ∘ −
)𝑞)) |
62 | 57, 56 | abssubd 15093 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞 − 𝑝)) = (abs‘(𝑝 − 𝑞))) |
63 | 60, 61, 62 | 3eqtr4d 2788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(abs‘(𝑞 − 𝑝))) |
64 | 53, 54, 63 | 3eqtr4rd 2789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞))) |
65 | 64 | breq1d 5080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 ↔
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
66 | 65 | biimpd 228 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
67 | 66 | ralrimiva 3107 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
68 | 67 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
69 | 68 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
70 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 ↔ (𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑒)) |
71 | 70 | imbi1d 341 |
. . . . . . 7
⊢ (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))) |
72 | 71 | 2ralbidv 3122 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))) |
73 | 72 | rspcev 3552 |
. . . . 5
⊢ ((𝑒 ∈ ℝ+
∧ ∀𝑝 ∈
ℚ ∀𝑞 ∈
ℚ ((𝑝((abs ∘
− ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
74 | 8, 69, 73 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∃𝑑 ∈
ℝ+ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
75 | 74 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
76 | | eqid 2738 |
. . . 4
⊢
(metUnif‘((abs ∘ − ) ↾ (ℚ ×
ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ ×
ℚ))) |
77 | | qqhucn.v |
. . . 4
⊢ 𝑉 =
(metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
78 | | 0z 12260 |
. . . . . 6
⊢ 0 ∈
ℤ |
79 | | zq 12623 |
. . . . . 6
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
80 | | ne0i 4265 |
. . . . . 6
⊢ (0 ∈
ℚ → ℚ ≠ ∅) |
81 | 78, 79, 80 | mp2b 10 |
. . . . 5
⊢ ℚ
≠ ∅ |
82 | 81 | a1i 11 |
. . . 4
⊢ (𝜑 → ℚ ≠
∅) |
83 | | drngring 19913 |
. . . . 5
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
84 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
85 | 3, 84 | ringidcl 19722 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
86 | | ne0i 4265 |
. . . . 5
⊢
((1r‘𝑅) ∈ 𝐵 → 𝐵 ≠ ∅) |
87 | 1, 83, 85, 86 | 4syl 19 |
. . . 4
⊢ (𝜑 → 𝐵 ≠ ∅) |
88 | | cnfldxms 23846 |
. . . . . . . 8
⊢
ℂfld ∈ ∞MetSp |
89 | | qex 12630 |
. . . . . . . 8
⊢ ℚ
∈ V |
90 | | ressxms 23587 |
. . . . . . . 8
⊢
((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V)
→ (ℂfld ↾s ℚ) ∈
∞MetSp) |
91 | 88, 89, 90 | mp2an 688 |
. . . . . . 7
⊢
(ℂfld ↾s ℚ) ∈
∞MetSp |
92 | 29, 91 | eqeltri 2835 |
. . . . . 6
⊢ 𝑄 ∈
∞MetSp |
93 | | cnfldds 20520 |
. . . . . . . . 9
⊢ (abs
∘ − ) = (dist‘ℂfld) |
94 | 29, 93 | ressds 17039 |
. . . . . . . 8
⊢ (ℚ
∈ V → (abs ∘ − ) = (dist‘𝑄)) |
95 | 89, 94 | ax-mp 5 |
. . . . . . 7
⊢ (abs
∘ − ) = (dist‘𝑄) |
96 | 38, 95 | xmsxmet2 23520 |
. . . . . 6
⊢ (𝑄 ∈ ∞MetSp →
((abs ∘ − ) ↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ)) |
97 | 92, 96 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((abs ∘ − )
↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ)) |
98 | | xmetpsmet 23409 |
. . . . 5
⊢ (((abs
∘ − ) ↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ
× ℚ)) ∈ (PsMet‘ℚ)) |
99 | 97, 98 | syl 17 |
. . . 4
⊢ (𝜑 → ((abs ∘ − )
↾ (ℚ × ℚ)) ∈
(PsMet‘ℚ)) |
100 | | ngpxms 23663 |
. . . . . 6
⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈
∞MetSp) |
101 | 3, 19 | xmsxmet2 23520 |
. . . . . 6
⊢ (𝑅 ∈ ∞MetSp →
((dist‘𝑅) ↾
(𝐵 × 𝐵)) ∈
(∞Met‘𝐵)) |
102 | 9, 10, 100, 101 | 4syl 19 |
. . . . 5
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) |
103 | | xmetpsmet 23409 |
. . . . 5
⊢
(((dist‘𝑅)
↾ (𝐵 × 𝐵)) ∈
(∞Met‘𝐵) →
((dist‘𝑅) ↾
(𝐵 × 𝐵)) ∈ (PsMet‘𝐵)) |
104 | 102, 103 | syl 17 |
. . . 4
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵)) |
105 | 76, 77, 82, 87, 99, 104 | metucn 23633 |
. . 3
⊢ (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs
∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔
((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))) |
106 | 7, 75, 105 | mpbir2and 709 |
. 2
⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs
∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉)) |
107 | | qqhucn.u |
. . . . . 6
⊢ 𝑈 = (UnifSt‘𝑄) |
108 | 29 | fveq2i 6759 |
. . . . . 6
⊢
(UnifSt‘𝑄) =
(UnifSt‘(ℂfld ↾s
ℚ)) |
109 | | ressuss 23322 |
. . . . . . 7
⊢ (ℚ
∈ V → (UnifSt‘(ℂfld ↾s
ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ
× ℚ))) |
110 | 89, 109 | ax-mp 5 |
. . . . . 6
⊢
(UnifSt‘(ℂfld ↾s ℚ)) =
((UnifSt‘ℂfld) ↾t (ℚ ×
ℚ)) |
111 | 107, 108,
110 | 3eqtri 2770 |
. . . . 5
⊢ 𝑈 =
((UnifSt‘ℂfld) ↾t (ℚ ×
ℚ)) |
112 | | eqid 2738 |
. . . . . . 7
⊢
(UnifSt‘ℂfld) =
(UnifSt‘ℂfld) |
113 | 112 | cnflduss 24425 |
. . . . . 6
⊢
(UnifSt‘ℂfld) = (metUnif‘(abs ∘
− )) |
114 | 113 | oveq1i 7265 |
. . . . 5
⊢
((UnifSt‘ℂfld) ↾t (ℚ
× ℚ)) = ((metUnif‘(abs ∘ − )) ↾t
(ℚ × ℚ)) |
115 | | cnxmet 23842 |
. . . . . . 7
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
116 | | xmetpsmet 23409 |
. . . . . . 7
⊢ ((abs
∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ −
) ∈ (PsMet‘ℂ)) |
117 | 115, 116 | ax-mp 5 |
. . . . . 6
⊢ (abs
∘ − ) ∈ (PsMet‘ℂ) |
118 | | restmetu 23632 |
. . . . . 6
⊢ ((ℚ
≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧
ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − ))
↾t (ℚ × ℚ)) = (metUnif‘((abs ∘
− ) ↾ (ℚ × ℚ)))) |
119 | 81, 117, 55, 118 | mp3an 1459 |
. . . . 5
⊢
((metUnif‘(abs ∘ − )) ↾t (ℚ
× ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ
× ℚ))) |
120 | 111, 114,
119 | 3eqtri 2770 |
. . . 4
⊢ 𝑈 = (metUnif‘((abs ∘
− ) ↾ (ℚ × ℚ))) |
121 | 120 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑈 = (metUnif‘((abs ∘ − )
↾ (ℚ × ℚ)))) |
122 | 121 | oveq1d 7270 |
. 2
⊢ (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − )
↾ (ℚ × ℚ))) Cnu𝑉)) |
123 | 106, 122 | eleqtrrd 2842 |
1
⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉)) |