Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   GIF version

Theorem qqhucn 31842
Description: The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b 𝐵 = (Base‘𝑅)
qqhucn.q 𝑄 = (ℂflds ℚ)
qqhucn.u 𝑈 = (UnifSt‘𝑄)
qqhucn.v 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
qqhucn.z 𝑍 = (ℤMod‘𝑅)
qqhucn.1 (𝜑𝑅 ∈ NrmRing)
qqhucn.2 (𝜑𝑅 ∈ DivRing)
qqhucn.3 (𝜑𝑍 ∈ NrmMod)
qqhucn.4 (𝜑 → (chr‘𝑅) = 0)
Assertion
Ref Expression
qqhucn (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))

Proof of Theorem qqhucn
Dummy variables 𝑒 𝑑 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4 (𝜑𝑅 ∈ DivRing)
2 qqhucn.4 . . . 4 (𝜑 → (chr‘𝑅) = 0)
3 qqhucn.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2738 . . . . 5 (/r𝑅) = (/r𝑅)
5 eqid 2738 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
63, 4, 5qqhf 31836 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
71, 2, 6syl2anc 583 . . 3 (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵)
8 simpr 484 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
9 qqhucn.1 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ NrmRing)
10 nrgngp 23732 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ NrmGrp)
1211ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
137ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
1413adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
157adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶𝐵)
1615ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵)
17 eqid 2738 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
18 eqid 2738 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
19 eqid 2738 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
2017, 3, 18, 19ngpdsr 23667 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
2112, 14, 16, 20syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
22 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
23 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ)
24 qsubdrg 20562 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2524simpli 483 . . . . . . . . . . . . . . . . . 18 ℚ ∈ (SubRing‘ℂfld)
26 subrgsubg 19945 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17 ℚ ∈ (SubGrp‘ℂfld)
28 cnfldsub 20538 . . . . . . . . . . . . . . . . . 18 − = (-g‘ℂfld)
29 qqhucn.q . . . . . . . . . . . . . . . . . 18 𝑄 = (ℂflds ℚ)
30 eqid 2738 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
3128, 29, 30subgsub 18682 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3227, 31mp3an1 1446 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3322, 23, 32syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3433fveq2d 6760 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)))
353, 4, 5, 29qqhghm 31838 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
361, 2, 35syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3736ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3829qrngbas 26672 . . . . . . . . . . . . . . . 16 ℚ = (Base‘𝑄)
3938, 30, 18ghmsub 18757 . . . . . . . . . . . . . . 15 (((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4037, 22, 23, 39syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4134, 40eqtr2d 2779 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞𝑝)))
4241fveq2d 6760 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))))
439, 1elind 4124 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (NrmRing ∩ DivRing))
4443ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
45 qqhucn.3 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ NrmMod)
4645ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod)
472ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
48 qsubcl 12637 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
4922, 23, 48syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
50 qqhucn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
5117, 50qqhnm 31840 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑞𝑝) ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5244, 46, 47, 49, 51syl31anc 1371 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5321, 42, 523eqtrd 2782 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞𝑝)))
5414, 16ovresd 7417 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
55 qsscn 12629 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
5655, 23sselid 3915 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ)
5755, 22sselid 3915 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
58 eqid 2738 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
5958cnmetdval 23840 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6056, 57, 59syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6123, 22ovresd 7417 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (𝑝(abs ∘ − )𝑞))
6257, 56abssubd 15093 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞𝑝)) = (abs‘(𝑝𝑞)))
6360, 61, 623eqtr4d 2788 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (abs‘(𝑞𝑝)))
6453, 54, 633eqtr4rd 2789 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)))
6564breq1d 5080 . . . . . . . . 9 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6665biimpd 228 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6766ralrimiva 3107 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6968adantr 480 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
70 breq2 5074 . . . . . . . 8 (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
7170imbi1d 341 . . . . . . 7 (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
72712ralbidv 3122 . . . . . 6 (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
7372rspcev 3552 . . . . 5 ((𝑒 ∈ ℝ+ ∧ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
748, 69, 73syl2anc 583 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
7574ralrimiva 3107 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
76 eqid 2738 . . . 4 (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
77 qqhucn.v . . . 4 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
78 0z 12260 . . . . . 6 0 ∈ ℤ
79 zq 12623 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
80 ne0i 4265 . . . . . 6 (0 ∈ ℚ → ℚ ≠ ∅)
8178, 79, 80mp2b 10 . . . . 5 ℚ ≠ ∅
8281a1i 11 . . . 4 (𝜑 → ℚ ≠ ∅)
83 drngring 19913 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
84 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
853, 84ringidcl 19722 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
86 ne0i 4265 . . . . 5 ((1r𝑅) ∈ 𝐵𝐵 ≠ ∅)
871, 83, 85, 864syl 19 . . . 4 (𝜑𝐵 ≠ ∅)
88 cnfldxms 23846 . . . . . . . 8 fld ∈ ∞MetSp
89 qex 12630 . . . . . . . 8 ℚ ∈ V
90 ressxms 23587 . . . . . . . 8 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
9188, 89, 90mp2an 688 . . . . . . 7 (ℂflds ℚ) ∈ ∞MetSp
9229, 91eqeltri 2835 . . . . . 6 𝑄 ∈ ∞MetSp
93 cnfldds 20520 . . . . . . . . 9 (abs ∘ − ) = (dist‘ℂfld)
9429, 93ressds 17039 . . . . . . . 8 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
9589, 94ax-mp 5 . . . . . . 7 (abs ∘ − ) = (dist‘𝑄)
9638, 95xmsxmet2 23520 . . . . . 6 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
9792, 96mp1i 13 . . . . 5 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
98 xmetpsmet 23409 . . . . 5 (((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
9997, 98syl 17 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
100 ngpxms 23663 . . . . . 6 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
1013, 19xmsxmet2 23520 . . . . . 6 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
1029, 10, 100, 1014syl 19 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
103 xmetpsmet 23409 . . . . 5 (((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
104102, 103syl 17 . . . 4 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
10576, 77, 82, 87, 99, 104metucn 23633 . . 3 (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔ ((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
1067, 75, 105mpbir2and 709 . 2 (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
107 qqhucn.u . . . . . 6 𝑈 = (UnifSt‘𝑄)
10829fveq2i 6759 . . . . . 6 (UnifSt‘𝑄) = (UnifSt‘(ℂflds ℚ))
109 ressuss 23322 . . . . . . 7 (ℚ ∈ V → (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)))
11089, 109ax-mp 5 . . . . . 6 (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
111107, 108, 1103eqtri 2770 . . . . 5 𝑈 = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
112 eqid 2738 . . . . . . 7 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
113112cnflduss 24425 . . . . . 6 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
114113oveq1i 7265 . . . . 5 ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)) = ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ))
115 cnxmet 23842 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
116 xmetpsmet 23409 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
117115, 116ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
118 restmetu 23632 . . . . . 6 ((ℚ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
11981, 117, 55, 118mp3an 1459 . . . . 5 ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
120111, 114, 1193eqtri 2770 . . . 4 𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
121120a1i 11 . . 3 (𝜑𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
122121oveq1d 7270 . 2 (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
123106, 122eleqtrrd 2842 1 (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  c0 4253   class class class wbr 5070   × cxp 5578  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   < clt 10940  cmin 11135  cz 12249  cq 12617  +crp 12659  abscabs 14873  Basecbs 16840  s cress 16867  distcds 16897  t crest 17048  -gcsg 18494  SubGrpcsubg 18664   GrpHom cghm 18746  1rcur 19652  Ringcrg 19698  /rcdvr 19839  DivRingcdr 19906  SubRingcsubrg 19935  PsMetcpsmet 20494  ∞Metcxmet 20495  metUnifcmetu 20501  fldccnfld 20510  ℤRHomczrh 20613  ℤModczlm 20614  chrcchr 20615  UnifStcuss 23313   Cnucucn 23335  ∞MetSpcxms 23378  normcnm 23638  NrmGrpcngp 23639  NrmRingcnrg 23641  NrmModcnlm 23642  ℚHomcqqh 31822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-abv 19992  df-lmod 20040  df-nzr 20442  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-metu 20509  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zlm 20618  df-chr 20619  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-fil 22905  df-ust 23260  df-uss 23316  df-ucn 23336  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-qqh 31823
This theorem is referenced by:  rrhcn  31847
  Copyright terms: Public domain W3C validator