Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   GIF version

Theorem qqhucn 31341
Description: The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b 𝐵 = (Base‘𝑅)
qqhucn.q 𝑄 = (ℂflds ℚ)
qqhucn.u 𝑈 = (UnifSt‘𝑄)
qqhucn.v 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
qqhucn.z 𝑍 = (ℤMod‘𝑅)
qqhucn.1 (𝜑𝑅 ∈ NrmRing)
qqhucn.2 (𝜑𝑅 ∈ DivRing)
qqhucn.3 (𝜑𝑍 ∈ NrmMod)
qqhucn.4 (𝜑 → (chr‘𝑅) = 0)
Assertion
Ref Expression
qqhucn (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))

Proof of Theorem qqhucn
Dummy variables 𝑒 𝑑 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4 (𝜑𝑅 ∈ DivRing)
2 qqhucn.4 . . . 4 (𝜑 → (chr‘𝑅) = 0)
3 qqhucn.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2801 . . . . 5 (/r𝑅) = (/r𝑅)
5 eqid 2801 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
63, 4, 5qqhf 31335 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
71, 2, 6syl2anc 587 . . 3 (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵)
8 simpr 488 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
9 qqhucn.1 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ NrmRing)
10 nrgngp 23271 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ NrmGrp)
1211ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
137ffvelrnda 6832 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
1413adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
157adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶𝐵)
1615ffvelrnda 6832 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵)
17 eqid 2801 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
18 eqid 2801 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
19 eqid 2801 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
2017, 3, 18, 19ngpdsr 23214 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
2112, 14, 16, 20syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
22 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
23 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ)
24 qsubdrg 20146 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2524simpli 487 . . . . . . . . . . . . . . . . . 18 ℚ ∈ (SubRing‘ℂfld)
26 subrgsubg 19537 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17 ℚ ∈ (SubGrp‘ℂfld)
28 cnfldsub 20122 . . . . . . . . . . . . . . . . . 18 − = (-g‘ℂfld)
29 qqhucn.q . . . . . . . . . . . . . . . . . 18 𝑄 = (ℂflds ℚ)
30 eqid 2801 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
3128, 29, 30subgsub 18286 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3227, 31mp3an1 1445 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3322, 23, 32syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3433fveq2d 6653 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)))
353, 4, 5, 29qqhghm 31337 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
361, 2, 35syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3736ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3829qrngbas 26206 . . . . . . . . . . . . . . . 16 ℚ = (Base‘𝑄)
3938, 30, 18ghmsub 18361 . . . . . . . . . . . . . . 15 (((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4037, 22, 23, 39syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4134, 40eqtr2d 2837 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞𝑝)))
4241fveq2d 6653 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))))
439, 1elind 4124 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (NrmRing ∩ DivRing))
4443ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
45 qqhucn.3 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ NrmMod)
4645ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod)
472ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
48 qsubcl 12359 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
4922, 23, 48syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
50 qqhucn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
5117, 50qqhnm 31339 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑞𝑝) ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5244, 46, 47, 49, 51syl31anc 1370 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5321, 42, 523eqtrd 2840 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞𝑝)))
5414, 16ovresd 7299 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
55 qsscn 12351 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
5655, 23sseldi 3916 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ)
5755, 22sseldi 3916 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
58 eqid 2801 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
5958cnmetdval 23379 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6056, 57, 59syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6123, 22ovresd 7299 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (𝑝(abs ∘ − )𝑞))
6257, 56abssubd 14808 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞𝑝)) = (abs‘(𝑝𝑞)))
6360, 61, 623eqtr4d 2846 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (abs‘(𝑞𝑝)))
6453, 54, 633eqtr4rd 2847 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)))
6564breq1d 5043 . . . . . . . . 9 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6665biimpd 232 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6766ralrimiva 3152 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6968adantr 484 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
70 breq2 5037 . . . . . . . 8 (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
7170imbi1d 345 . . . . . . 7 (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
72712ralbidv 3167 . . . . . 6 (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
7372rspcev 3574 . . . . 5 ((𝑒 ∈ ℝ+ ∧ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
748, 69, 73syl2anc 587 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
7574ralrimiva 3152 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
76 eqid 2801 . . . 4 (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
77 qqhucn.v . . . 4 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
78 0z 11984 . . . . . 6 0 ∈ ℤ
79 zq 12346 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
80 ne0i 4253 . . . . . 6 (0 ∈ ℚ → ℚ ≠ ∅)
8178, 79, 80mp2b 10 . . . . 5 ℚ ≠ ∅
8281a1i 11 . . . 4 (𝜑 → ℚ ≠ ∅)
83 drngring 19505 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
84 eqid 2801 . . . . . 6 (1r𝑅) = (1r𝑅)
853, 84ringidcl 19317 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
86 ne0i 4253 . . . . 5 ((1r𝑅) ∈ 𝐵𝐵 ≠ ∅)
871, 83, 85, 864syl 19 . . . 4 (𝜑𝐵 ≠ ∅)
88 cnfldxms 23385 . . . . . . . 8 fld ∈ ∞MetSp
89 qex 12352 . . . . . . . 8 ℚ ∈ V
90 ressxms 23135 . . . . . . . 8 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
9188, 89, 90mp2an 691 . . . . . . 7 (ℂflds ℚ) ∈ ∞MetSp
9229, 91eqeltri 2889 . . . . . 6 𝑄 ∈ ∞MetSp
93 cnfldds 20104 . . . . . . . . 9 (abs ∘ − ) = (dist‘ℂfld)
9429, 93ressds 16681 . . . . . . . 8 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
9589, 94ax-mp 5 . . . . . . 7 (abs ∘ − ) = (dist‘𝑄)
9638, 95xmsxmet2 23069 . . . . . 6 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
9792, 96mp1i 13 . . . . 5 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
98 xmetpsmet 22958 . . . . 5 (((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
9997, 98syl 17 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
100 ngpxms 23210 . . . . . 6 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
1013, 19xmsxmet2 23069 . . . . . 6 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
1029, 10, 100, 1014syl 19 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
103 xmetpsmet 22958 . . . . 5 (((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
104102, 103syl 17 . . . 4 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
10576, 77, 82, 87, 99, 104metucn 23181 . . 3 (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔ ((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
1067, 75, 105mpbir2and 712 . 2 (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
107 qqhucn.u . . . . . 6 𝑈 = (UnifSt‘𝑄)
10829fveq2i 6652 . . . . . 6 (UnifSt‘𝑄) = (UnifSt‘(ℂflds ℚ))
109 ressuss 22872 . . . . . . 7 (ℚ ∈ V → (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)))
11089, 109ax-mp 5 . . . . . 6 (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
111107, 108, 1103eqtri 2828 . . . . 5 𝑈 = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
112 eqid 2801 . . . . . . 7 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
113112cnflduss 23963 . . . . . 6 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
114113oveq1i 7149 . . . . 5 ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)) = ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ))
115 cnxmet 23381 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
116 xmetpsmet 22958 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
117115, 116ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
118 restmetu 23180 . . . . . 6 ((ℚ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
11981, 117, 55, 118mp3an 1458 . . . . 5 ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
120111, 114, 1193eqtri 2828 . . . 4 𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
121120a1i 11 . . 3 (𝜑𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
122121oveq1d 7154 . 2 (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
123106, 122eleqtrrd 2896 1 (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  Vcvv 3444  cin 3883  wss 3884  c0 4246   class class class wbr 5033   × cxp 5521  cres 5525  ccom 5527  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530   < clt 10668  cmin 10863  cz 11973  cq 12340  +crp 12381  abscabs 14588  Basecbs 16478  s cress 16479  distcds 16569  t crest 16689  -gcsg 18100  SubGrpcsubg 18268   GrpHom cghm 18350  1rcur 19247  Ringcrg 19293  /rcdvr 19431  DivRingcdr 19498  SubRingcsubrg 19527  PsMetcpsmet 20078  ∞Metcxmet 20079  metUnifcmetu 20085  fldccnfld 20094  ℤRHomczrh 20196  ℤModczlm 20197  chrcchr 20198  UnifStcuss 22862   Cnucucn 22884  ∞MetSpcxms 22927  normcnm 23186  NrmGrpcngp 23187  NrmRingcnrg 23189  NrmModcnlm 23190  ℚHomcqqh 31321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15837  df-numer 16068  df-denom 16069  df-gz 16259  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-rest 16691  df-topn 16692  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-od 18651  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19500  df-subrg 19529  df-abv 19584  df-lmod 19632  df-nzr 20027  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-metu 20093  df-cnfld 20095  df-zring 20167  df-zrh 20200  df-zlm 20201  df-chr 20202  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-fil 22454  df-ust 22809  df-uss 22865  df-ucn 22885  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196  df-qqh 31322
This theorem is referenced by:  rrhcn  31346
  Copyright terms: Public domain W3C validator