Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   GIF version

Theorem qqhucn 34016
Description: The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b 𝐵 = (Base‘𝑅)
qqhucn.q 𝑄 = (ℂflds ℚ)
qqhucn.u 𝑈 = (UnifSt‘𝑄)
qqhucn.v 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
qqhucn.z 𝑍 = (ℤMod‘𝑅)
qqhucn.1 (𝜑𝑅 ∈ NrmRing)
qqhucn.2 (𝜑𝑅 ∈ DivRing)
qqhucn.3 (𝜑𝑍 ∈ NrmMod)
qqhucn.4 (𝜑 → (chr‘𝑅) = 0)
Assertion
Ref Expression
qqhucn (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))

Proof of Theorem qqhucn
Dummy variables 𝑒 𝑑 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4 (𝜑𝑅 ∈ DivRing)
2 qqhucn.4 . . . 4 (𝜑 → (chr‘𝑅) = 0)
3 qqhucn.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2733 . . . . 5 (/r𝑅) = (/r𝑅)
5 eqid 2733 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
63, 4, 5qqhf 34010 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
71, 2, 6syl2anc 584 . . 3 (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵)
8 simpr 484 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
9 qqhucn.1 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ NrmRing)
10 nrgngp 24587 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ NrmGrp)
1211ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
137ffvelcdmda 7026 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
1413adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
157adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶𝐵)
1615ffvelcdmda 7026 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵)
17 eqid 2733 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
18 eqid 2733 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
19 eqid 2733 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
2017, 3, 18, 19ngpdsr 24530 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
2112, 14, 16, 20syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
22 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
23 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ)
24 qsubdrg 21366 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2524simpli 483 . . . . . . . . . . . . . . . . . 18 ℚ ∈ (SubRing‘ℂfld)
26 subrgsubg 20502 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17 ℚ ∈ (SubGrp‘ℂfld)
28 cnfldsub 21344 . . . . . . . . . . . . . . . . . 18 − = (-g‘ℂfld)
29 qqhucn.q . . . . . . . . . . . . . . . . . 18 𝑄 = (ℂflds ℚ)
30 eqid 2733 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
3128, 29, 30subgsub 19061 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3227, 31mp3an1 1450 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3322, 23, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3433fveq2d 6835 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)))
353, 4, 5, 29qqhghm 34012 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
361, 2, 35syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3736ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3829qrngbas 27567 . . . . . . . . . . . . . . . 16 ℚ = (Base‘𝑄)
3938, 30, 18ghmsub 19146 . . . . . . . . . . . . . . 15 (((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4037, 22, 23, 39syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4134, 40eqtr2d 2769 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞𝑝)))
4241fveq2d 6835 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))))
439, 1elind 4151 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (NrmRing ∩ DivRing))
4443ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
45 qqhucn.3 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ NrmMod)
4645ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod)
472ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
48 qsubcl 12876 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
4922, 23, 48syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
50 qqhucn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
5117, 50qqhnm 34014 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑞𝑝) ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5244, 46, 47, 49, 51syl31anc 1375 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5321, 42, 523eqtrd 2772 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞𝑝)))
5414, 16ovresd 7522 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
55 qsscn 12868 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
5655, 23sselid 3929 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ)
5755, 22sselid 3929 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
58 eqid 2733 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
5958cnmetdval 24695 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6056, 57, 59syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6123, 22ovresd 7522 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (𝑝(abs ∘ − )𝑞))
6257, 56abssubd 15373 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞𝑝)) = (abs‘(𝑝𝑞)))
6360, 61, 623eqtr4d 2778 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (abs‘(𝑞𝑝)))
6453, 54, 633eqtr4rd 2779 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)))
6564breq1d 5105 . . . . . . . . 9 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6665biimpd 229 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6766ralrimiva 3126 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6968adantr 480 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
70 breq2 5099 . . . . . . . 8 (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
7170imbi1d 341 . . . . . . 7 (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
72712ralbidv 3198 . . . . . 6 (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
7372rspcev 3574 . . . . 5 ((𝑒 ∈ ℝ+ ∧ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
748, 69, 73syl2anc 584 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
7574ralrimiva 3126 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
76 eqid 2733 . . . 4 (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
77 qqhucn.v . . . 4 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
78 0z 12489 . . . . . 6 0 ∈ ℤ
79 zq 12862 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
80 ne0i 4292 . . . . . 6 (0 ∈ ℚ → ℚ ≠ ∅)
8178, 79, 80mp2b 10 . . . . 5 ℚ ≠ ∅
8281a1i 11 . . . 4 (𝜑 → ℚ ≠ ∅)
83 drngring 20661 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
84 eqid 2733 . . . . . 6 (1r𝑅) = (1r𝑅)
853, 84ringidcl 20193 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
86 ne0i 4292 . . . . 5 ((1r𝑅) ∈ 𝐵𝐵 ≠ ∅)
871, 83, 85, 864syl 19 . . . 4 (𝜑𝐵 ≠ ∅)
88 cnfldxms 24701 . . . . . . . 8 fld ∈ ∞MetSp
89 qex 12869 . . . . . . . 8 ℚ ∈ V
90 ressxms 24450 . . . . . . . 8 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
9188, 89, 90mp2an 692 . . . . . . 7 (ℂflds ℚ) ∈ ∞MetSp
9229, 91eqeltri 2829 . . . . . 6 𝑄 ∈ ∞MetSp
93 cnfldds 21313 . . . . . . . . 9 (abs ∘ − ) = (dist‘ℂfld)
9429, 93ressds 17324 . . . . . . . 8 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
9589, 94ax-mp 5 . . . . . . 7 (abs ∘ − ) = (dist‘𝑄)
9638, 95xmsxmet2 24384 . . . . . 6 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
9792, 96mp1i 13 . . . . 5 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
98 xmetpsmet 24273 . . . . 5 (((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
9997, 98syl 17 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
100 ngpxms 24526 . . . . . 6 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
1013, 19xmsxmet2 24384 . . . . . 6 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
1029, 10, 100, 1014syl 19 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
103 xmetpsmet 24273 . . . . 5 (((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
104102, 103syl 17 . . . 4 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
10576, 77, 82, 87, 99, 104metucn 24496 . . 3 (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔ ((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
1067, 75, 105mpbir2and 713 . 2 (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
107 qqhucn.u . . . . . 6 𝑈 = (UnifSt‘𝑄)
10829fveq2i 6834 . . . . . 6 (UnifSt‘𝑄) = (UnifSt‘(ℂflds ℚ))
109 ressuss 24187 . . . . . . 7 (ℚ ∈ V → (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)))
11089, 109ax-mp 5 . . . . . 6 (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
111107, 108, 1103eqtri 2760 . . . . 5 𝑈 = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
112 eqid 2733 . . . . . . 7 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
113112cnflduss 25293 . . . . . 6 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
114113oveq1i 7365 . . . . 5 ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)) = ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ))
115 cnxmet 24697 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
116 xmetpsmet 24273 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
117115, 116ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
118 restmetu 24495 . . . . . 6 ((ℚ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
11981, 117, 55, 118mp3an 1463 . . . . 5 ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
120111, 114, 1193eqtri 2760 . . . 4 𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
121120a1i 11 . . 3 (𝜑𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
122121oveq1d 7370 . 2 (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
123106, 122eleqtrrd 2836 1 (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  Vcvv 3438  cin 3898  wss 3899  c0 4284   class class class wbr 5095   × cxp 5619  cres 5623  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016   < clt 11156  cmin 11354  cz 12478  cq 12856  +crp 12900  abscabs 15151  Basecbs 17130  s cress 17151  distcds 17180  t crest 17334  -gcsg 18858  SubGrpcsubg 19043   GrpHom cghm 19134  1rcur 20109  Ringcrg 20161  /rcdvr 20328  SubRingcsubrg 20494  DivRingcdr 20654  PsMetcpsmet 21285  ∞Metcxmet 21286  metUnifcmetu 21292  fldccnfld 21301  ℤRHomczrh 21446  ℤModczlm 21447  chrcchr 21448  UnifStcuss 24178   Cnucucn 24199  ∞MetSpcxms 24242  normcnm 24501  NrmGrpcngp 24502  NrmRingcnrg 24504  NrmModcnlm 24505  ℚHomcqqh 33994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ico 13261  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-dvds 16174  df-gcd 16416  df-numer 16656  df-denom 16657  df-gz 16852  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-rest 17336  df-topn 17337  df-0g 17355  df-topgen 17357  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-od 19450  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-nzr 20438  df-subrng 20471  df-subrg 20495  df-drng 20656  df-abv 20734  df-lmod 20805  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-metu 21300  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-zlm 21451  df-chr 21452  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-fil 23771  df-ust 24126  df-uss 24181  df-ucn 24200  df-xms 24245  df-ms 24246  df-nm 24507  df-ngp 24508  df-nrg 24510  df-nlm 24511  df-qqh 33995
This theorem is referenced by:  rrhcn  34021
  Copyright terms: Public domain W3C validator