Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   GIF version

Theorem qqhucn 31608
Description: The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b 𝐵 = (Base‘𝑅)
qqhucn.q 𝑄 = (ℂflds ℚ)
qqhucn.u 𝑈 = (UnifSt‘𝑄)
qqhucn.v 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
qqhucn.z 𝑍 = (ℤMod‘𝑅)
qqhucn.1 (𝜑𝑅 ∈ NrmRing)
qqhucn.2 (𝜑𝑅 ∈ DivRing)
qqhucn.3 (𝜑𝑍 ∈ NrmMod)
qqhucn.4 (𝜑 → (chr‘𝑅) = 0)
Assertion
Ref Expression
qqhucn (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))

Proof of Theorem qqhucn
Dummy variables 𝑒 𝑑 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4 (𝜑𝑅 ∈ DivRing)
2 qqhucn.4 . . . 4 (𝜑 → (chr‘𝑅) = 0)
3 qqhucn.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2736 . . . . 5 (/r𝑅) = (/r𝑅)
5 eqid 2736 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
63, 4, 5qqhf 31602 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
71, 2, 6syl2anc 587 . . 3 (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵)
8 simpr 488 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
9 qqhucn.1 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ NrmRing)
10 nrgngp 23514 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ NrmGrp)
1211ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
137ffvelrnda 6882 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
1413adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
157adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶𝐵)
1615ffvelrnda 6882 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵)
17 eqid 2736 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
18 eqid 2736 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
19 eqid 2736 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
2017, 3, 18, 19ngpdsr 23457 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
2112, 14, 16, 20syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
22 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
23 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ)
24 qsubdrg 20369 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2524simpli 487 . . . . . . . . . . . . . . . . . 18 ℚ ∈ (SubRing‘ℂfld)
26 subrgsubg 19760 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17 ℚ ∈ (SubGrp‘ℂfld)
28 cnfldsub 20345 . . . . . . . . . . . . . . . . . 18 − = (-g‘ℂfld)
29 qqhucn.q . . . . . . . . . . . . . . . . . 18 𝑄 = (ℂflds ℚ)
30 eqid 2736 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
3128, 29, 30subgsub 18509 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3227, 31mp3an1 1450 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3322, 23, 32syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3433fveq2d 6699 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)))
353, 4, 5, 29qqhghm 31604 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
361, 2, 35syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3736ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3829qrngbas 26454 . . . . . . . . . . . . . . . 16 ℚ = (Base‘𝑄)
3938, 30, 18ghmsub 18584 . . . . . . . . . . . . . . 15 (((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4037, 22, 23, 39syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4134, 40eqtr2d 2772 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞𝑝)))
4241fveq2d 6699 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))))
439, 1elind 4094 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (NrmRing ∩ DivRing))
4443ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
45 qqhucn.3 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ NrmMod)
4645ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod)
472ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
48 qsubcl 12529 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
4922, 23, 48syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
50 qqhucn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
5117, 50qqhnm 31606 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑞𝑝) ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5244, 46, 47, 49, 51syl31anc 1375 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5321, 42, 523eqtrd 2775 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞𝑝)))
5414, 16ovresd 7353 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
55 qsscn 12521 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
5655, 23sseldi 3885 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ)
5755, 22sseldi 3885 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
58 eqid 2736 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
5958cnmetdval 23622 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6056, 57, 59syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6123, 22ovresd 7353 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (𝑝(abs ∘ − )𝑞))
6257, 56abssubd 14982 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞𝑝)) = (abs‘(𝑝𝑞)))
6360, 61, 623eqtr4d 2781 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (abs‘(𝑞𝑝)))
6453, 54, 633eqtr4rd 2782 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)))
6564breq1d 5049 . . . . . . . . 9 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6665biimpd 232 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6766ralrimiva 3095 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 3095 . . . . . 6 (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6968adantr 484 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
70 breq2 5043 . . . . . . . 8 (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
7170imbi1d 345 . . . . . . 7 (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
72712ralbidv 3110 . . . . . 6 (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
7372rspcev 3527 . . . . 5 ((𝑒 ∈ ℝ+ ∧ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
748, 69, 73syl2anc 587 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
7574ralrimiva 3095 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
76 eqid 2736 . . . 4 (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
77 qqhucn.v . . . 4 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
78 0z 12152 . . . . . 6 0 ∈ ℤ
79 zq 12515 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
80 ne0i 4235 . . . . . 6 (0 ∈ ℚ → ℚ ≠ ∅)
8178, 79, 80mp2b 10 . . . . 5 ℚ ≠ ∅
8281a1i 11 . . . 4 (𝜑 → ℚ ≠ ∅)
83 drngring 19728 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
84 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
853, 84ringidcl 19540 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
86 ne0i 4235 . . . . 5 ((1r𝑅) ∈ 𝐵𝐵 ≠ ∅)
871, 83, 85, 864syl 19 . . . 4 (𝜑𝐵 ≠ ∅)
88 cnfldxms 23628 . . . . . . . 8 fld ∈ ∞MetSp
89 qex 12522 . . . . . . . 8 ℚ ∈ V
90 ressxms 23377 . . . . . . . 8 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
9188, 89, 90mp2an 692 . . . . . . 7 (ℂflds ℚ) ∈ ∞MetSp
9229, 91eqeltri 2827 . . . . . 6 𝑄 ∈ ∞MetSp
93 cnfldds 20327 . . . . . . . . 9 (abs ∘ − ) = (dist‘ℂfld)
9429, 93ressds 16871 . . . . . . . 8 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
9589, 94ax-mp 5 . . . . . . 7 (abs ∘ − ) = (dist‘𝑄)
9638, 95xmsxmet2 23311 . . . . . 6 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
9792, 96mp1i 13 . . . . 5 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
98 xmetpsmet 23200 . . . . 5 (((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
9997, 98syl 17 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
100 ngpxms 23453 . . . . . 6 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
1013, 19xmsxmet2 23311 . . . . . 6 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
1029, 10, 100, 1014syl 19 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
103 xmetpsmet 23200 . . . . 5 (((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
104102, 103syl 17 . . . 4 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
10576, 77, 82, 87, 99, 104metucn 23423 . . 3 (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔ ((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
1067, 75, 105mpbir2and 713 . 2 (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
107 qqhucn.u . . . . . 6 𝑈 = (UnifSt‘𝑄)
10829fveq2i 6698 . . . . . 6 (UnifSt‘𝑄) = (UnifSt‘(ℂflds ℚ))
109 ressuss 23114 . . . . . . 7 (ℚ ∈ V → (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)))
11089, 109ax-mp 5 . . . . . 6 (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
111107, 108, 1103eqtri 2763 . . . . 5 𝑈 = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
112 eqid 2736 . . . . . . 7 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
113112cnflduss 24207 . . . . . 6 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
114113oveq1i 7201 . . . . 5 ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)) = ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ))
115 cnxmet 23624 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
116 xmetpsmet 23200 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
117115, 116ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
118 restmetu 23422 . . . . . 6 ((ℚ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
11981, 117, 55, 118mp3an 1463 . . . . 5 ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
120111, 114, 1193eqtri 2763 . . . 4 𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
121120a1i 11 . . 3 (𝜑𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
122121oveq1d 7206 . 2 (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
123106, 122eleqtrrd 2834 1 (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cin 3852  wss 3853  c0 4223   class class class wbr 5039   × cxp 5534  cres 5538  ccom 5540  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694   < clt 10832  cmin 11027  cz 12141  cq 12509  +crp 12551  abscabs 14762  Basecbs 16666  s cress 16667  distcds 16758  t crest 16879  -gcsg 18321  SubGrpcsubg 18491   GrpHom cghm 18573  1rcur 19470  Ringcrg 19516  /rcdvr 19654  DivRingcdr 19721  SubRingcsubrg 19750  PsMetcpsmet 20301  ∞Metcxmet 20302  metUnifcmetu 20308  fldccnfld 20317  ℤRHomczrh 20420  ℤModczlm 20421  chrcchr 20422  UnifStcuss 23105   Cnucucn 23126  ∞MetSpcxms 23169  normcnm 23428  NrmGrpcngp 23429  NrmRingcnrg 23431  NrmModcnlm 23432  ℚHomcqqh 31588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779  df-gcd 16017  df-numer 16254  df-denom 16255  df-gz 16446  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-rest 16881  df-topn 16882  df-0g 16900  df-topgen 16902  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-ghm 18574  df-od 18874  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-rnghom 19689  df-drng 19723  df-subrg 19752  df-abv 19807  df-lmod 19855  df-nzr 20250  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-metu 20316  df-cnfld 20318  df-zring 20390  df-zrh 20424  df-zlm 20425  df-chr 20426  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-fil 22697  df-ust 23052  df-uss 23108  df-ucn 23127  df-xms 23172  df-ms 23173  df-nm 23434  df-ngp 23435  df-nrg 23437  df-nlm 23438  df-qqh 31589
This theorem is referenced by:  rrhcn  31613
  Copyright terms: Public domain W3C validator