| Step | Hyp | Ref
| Expression |
| 1 | | qqhucn.2 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 2 | | qqhucn.4 |
. . . 4
⊢ (𝜑 → (chr‘𝑅) = 0) |
| 3 | | qqhucn.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2736 |
. . . . 5
⊢
(/r‘𝑅) = (/r‘𝑅) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 6 | 3, 4, 5 | qqhf 34022 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
| 7 | 1, 2, 6 | syl2anc 584 |
. . 3
⊢ (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵) |
| 8 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ+) |
| 9 | | qqhucn.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ NrmRing) |
| 10 | | nrgngp 24606 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ NrmGrp) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp) |
| 13 | 7 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵) |
| 15 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) →
(ℚHom‘𝑅):ℚ⟶𝐵) |
| 16 | 15 | ffvelcdmda 7079 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) |
| 17 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(norm‘𝑅) =
(norm‘𝑅) |
| 18 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 19 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(dist‘𝑅) =
(dist‘𝑅) |
| 20 | 17, 3, 18, 19 | ngpdsr 24549 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ NrmGrp ∧
((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)))) |
| 21 | 12, 14, 16, 20 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)))) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ) |
| 23 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ) |
| 24 | | qsubdrg 21392 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
| 25 | 24 | simpli 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
∈ (SubRing‘ℂfld) |
| 26 | | subrgsubg 20542 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℚ
∈ (SubRing‘ℂfld) → ℚ ∈
(SubGrp‘ℂfld)) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ℚ
∈ (SubGrp‘ℂfld) |
| 28 | | cnfldsub 21365 |
. . . . . . . . . . . . . . . . . 18
⊢ −
= (-g‘ℂfld) |
| 29 | | qqhucn.q |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 30 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢
(-g‘𝑄) = (-g‘𝑄) |
| 31 | 28, 29, 30 | subgsub 19126 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℚ
∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
| 32 | 27, 31 | mp3an1 1450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
| 33 | 22, 23, 32 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞 − 𝑝) = (𝑞(-g‘𝑄)𝑝)) |
| 34 | 33 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞 − 𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝))) |
| 35 | 3, 4, 5, 29 | qqhghm 34024 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ DivRing ∧
(chr‘𝑅) = 0) →
(ℚHom‘𝑅) ∈
(𝑄 GrpHom 𝑅)) |
| 36 | 1, 2, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(ℚHom‘𝑅) ∈
(𝑄 GrpHom 𝑅)) |
| 38 | 29 | qrngbas 27587 |
. . . . . . . . . . . . . . . 16
⊢ ℚ =
(Base‘𝑄) |
| 39 | 38, 30, 18 | ghmsub 19212 |
. . . . . . . . . . . . . . 15
⊢
(((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) |
| 40 | 37, 22, 23, 39 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
((ℚHom‘𝑅)‘(𝑞(-g‘𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) |
| 41 | 34, 40 | eqtr2d 2772 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞 − 𝑝))) |
| 42 | 41 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g‘𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝)))) |
| 43 | 9, 1 | elind 4180 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ (NrmRing ∩
DivRing)) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩
DivRing)) |
| 45 | | qqhucn.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ NrmMod) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod) |
| 47 | 2 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0) |
| 48 | | qsubcl 12989 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞 − 𝑝) ∈ ℚ) |
| 49 | 22, 23, 48 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞 − 𝑝) ∈ ℚ) |
| 50 | | qqhucn.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 = (ℤMod‘𝑅) |
| 51 | 17, 50 | qqhnm 34026 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ (NrmRing ∩ DivRing)
∧ 𝑍 ∈ NrmMod ∧
(chr‘𝑅) = 0) ∧
(𝑞 − 𝑝) ∈ ℚ) →
((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝))) = (abs‘(𝑞 − 𝑝))) |
| 52 | 44, 46, 47, 49, 51 | syl31anc 1375 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞 − 𝑝))) = (abs‘(𝑞 − 𝑝))) |
| 53 | 21, 42, 52 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞 − 𝑝))) |
| 54 | 14, 16 | ovresd 7579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞))) |
| 55 | | qsscn 12981 |
. . . . . . . . . . . . . 14
⊢ ℚ
⊆ ℂ |
| 56 | 55, 23 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ) |
| 57 | 55, 22 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ) |
| 58 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 59 | 58 | cnmetdval 24714 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝 − 𝑞))) |
| 60 | 56, 57, 59 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝 − 𝑞))) |
| 61 | 23, 22 | ovresd 7579 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(𝑝(abs ∘ −
)𝑞)) |
| 62 | 57, 56 | abssubd 15477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞 − 𝑝)) = (abs‘(𝑝 − 𝑞))) |
| 63 | 60, 61, 62 | 3eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(abs‘(𝑞 − 𝑝))) |
| 64 | 53, 54, 63 | 3eqtr4rd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) =
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞))) |
| 65 | 64 | breq1d 5134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 ↔
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 66 | 65 | biimpd 229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 67 | 66 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 68 | 67 | ralrimiva 3133 |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 69 | 68 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 70 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 ↔ (𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑒)) |
| 71 | 70 | imbi1d 341 |
. . . . . . 7
⊢ (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))) |
| 72 | 71 | 2ralbidv 3209 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑒 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))) |
| 73 | 72 | rspcev 3606 |
. . . . 5
⊢ ((𝑒 ∈ ℝ+
∧ ∀𝑝 ∈
ℚ ∀𝑞 ∈
ℚ ((𝑝((abs ∘
− ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾
(ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 74 | 8, 69, 73 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∃𝑑 ∈
ℝ+ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ
× ℚ))𝑞) <
𝑑 →
(((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 75 | 74 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) |
| 76 | | eqid 2736 |
. . . 4
⊢
(metUnif‘((abs ∘ − ) ↾ (ℚ ×
ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ ×
ℚ))) |
| 77 | | qqhucn.v |
. . . 4
⊢ 𝑉 =
(metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) |
| 78 | | 0z 12604 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 79 | | zq 12975 |
. . . . . 6
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
| 80 | | ne0i 4321 |
. . . . . 6
⊢ (0 ∈
ℚ → ℚ ≠ ∅) |
| 81 | 78, 79, 80 | mp2b 10 |
. . . . 5
⊢ ℚ
≠ ∅ |
| 82 | 81 | a1i 11 |
. . . 4
⊢ (𝜑 → ℚ ≠
∅) |
| 83 | | drngring 20701 |
. . . . 5
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| 84 | | eqid 2736 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 85 | 3, 84 | ringidcl 20230 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
| 86 | | ne0i 4321 |
. . . . 5
⊢
((1r‘𝑅) ∈ 𝐵 → 𝐵 ≠ ∅) |
| 87 | 1, 83, 85, 86 | 4syl 19 |
. . . 4
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 88 | | cnfldxms 24720 |
. . . . . . . 8
⊢
ℂfld ∈ ∞MetSp |
| 89 | | qex 12982 |
. . . . . . . 8
⊢ ℚ
∈ V |
| 90 | | ressxms 24469 |
. . . . . . . 8
⊢
((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V)
→ (ℂfld ↾s ℚ) ∈
∞MetSp) |
| 91 | 88, 89, 90 | mp2an 692 |
. . . . . . 7
⊢
(ℂfld ↾s ℚ) ∈
∞MetSp |
| 92 | 29, 91 | eqeltri 2831 |
. . . . . 6
⊢ 𝑄 ∈
∞MetSp |
| 93 | | cnfldds 21332 |
. . . . . . . . 9
⊢ (abs
∘ − ) = (dist‘ℂfld) |
| 94 | 29, 93 | ressds 17429 |
. . . . . . . 8
⊢ (ℚ
∈ V → (abs ∘ − ) = (dist‘𝑄)) |
| 95 | 89, 94 | ax-mp 5 |
. . . . . . 7
⊢ (abs
∘ − ) = (dist‘𝑄) |
| 96 | 38, 95 | xmsxmet2 24403 |
. . . . . 6
⊢ (𝑄 ∈ ∞MetSp →
((abs ∘ − ) ↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ)) |
| 97 | 92, 96 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((abs ∘ − )
↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ)) |
| 98 | | xmetpsmet 24292 |
. . . . 5
⊢ (((abs
∘ − ) ↾ (ℚ × ℚ)) ∈
(∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ
× ℚ)) ∈ (PsMet‘ℚ)) |
| 99 | 97, 98 | syl 17 |
. . . 4
⊢ (𝜑 → ((abs ∘ − )
↾ (ℚ × ℚ)) ∈
(PsMet‘ℚ)) |
| 100 | | ngpxms 24545 |
. . . . . 6
⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈
∞MetSp) |
| 101 | 3, 19 | xmsxmet2 24403 |
. . . . . 6
⊢ (𝑅 ∈ ∞MetSp →
((dist‘𝑅) ↾
(𝐵 × 𝐵)) ∈
(∞Met‘𝐵)) |
| 102 | 9, 10, 100, 101 | 4syl 19 |
. . . . 5
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) |
| 103 | | xmetpsmet 24292 |
. . . . 5
⊢
(((dist‘𝑅)
↾ (𝐵 × 𝐵)) ∈
(∞Met‘𝐵) →
((dist‘𝑅) ↾
(𝐵 × 𝐵)) ∈ (PsMet‘𝐵)) |
| 104 | 102, 103 | syl 17 |
. . . 4
⊢ (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵)) |
| 105 | 76, 77, 82, 87, 99, 104 | metucn 24515 |
. . 3
⊢ (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs
∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔
((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑝 ∈ ℚ
∀𝑞 ∈ ℚ
((𝑝((abs ∘ − )
↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))) |
| 106 | 7, 75, 105 | mpbir2and 713 |
. 2
⊢ (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs
∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉)) |
| 107 | | qqhucn.u |
. . . . . 6
⊢ 𝑈 = (UnifSt‘𝑄) |
| 108 | 29 | fveq2i 6884 |
. . . . . 6
⊢
(UnifSt‘𝑄) =
(UnifSt‘(ℂfld ↾s
ℚ)) |
| 109 | | ressuss 24206 |
. . . . . . 7
⊢ (ℚ
∈ V → (UnifSt‘(ℂfld ↾s
ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ
× ℚ))) |
| 110 | 89, 109 | ax-mp 5 |
. . . . . 6
⊢
(UnifSt‘(ℂfld ↾s ℚ)) =
((UnifSt‘ℂfld) ↾t (ℚ ×
ℚ)) |
| 111 | 107, 108,
110 | 3eqtri 2763 |
. . . . 5
⊢ 𝑈 =
((UnifSt‘ℂfld) ↾t (ℚ ×
ℚ)) |
| 112 | | eqid 2736 |
. . . . . . 7
⊢
(UnifSt‘ℂfld) =
(UnifSt‘ℂfld) |
| 113 | 112 | cnflduss 25313 |
. . . . . 6
⊢
(UnifSt‘ℂfld) = (metUnif‘(abs ∘
− )) |
| 114 | 113 | oveq1i 7420 |
. . . . 5
⊢
((UnifSt‘ℂfld) ↾t (ℚ
× ℚ)) = ((metUnif‘(abs ∘ − )) ↾t
(ℚ × ℚ)) |
| 115 | | cnxmet 24716 |
. . . . . . 7
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 116 | | xmetpsmet 24292 |
. . . . . . 7
⊢ ((abs
∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ −
) ∈ (PsMet‘ℂ)) |
| 117 | 115, 116 | ax-mp 5 |
. . . . . 6
⊢ (abs
∘ − ) ∈ (PsMet‘ℂ) |
| 118 | | restmetu 24514 |
. . . . . 6
⊢ ((ℚ
≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧
ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − ))
↾t (ℚ × ℚ)) = (metUnif‘((abs ∘
− ) ↾ (ℚ × ℚ)))) |
| 119 | 81, 117, 55, 118 | mp3an 1463 |
. . . . 5
⊢
((metUnif‘(abs ∘ − )) ↾t (ℚ
× ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ
× ℚ))) |
| 120 | 111, 114,
119 | 3eqtri 2763 |
. . . 4
⊢ 𝑈 = (metUnif‘((abs ∘
− ) ↾ (ℚ × ℚ))) |
| 121 | 120 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑈 = (metUnif‘((abs ∘ − )
↾ (ℚ × ℚ)))) |
| 122 | 121 | oveq1d 7425 |
. 2
⊢ (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − )
↾ (ℚ × ℚ))) Cnu𝑉)) |
| 123 | 106, 122 | eleqtrrd 2838 |
1
⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉)) |