| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpds3 | Structured version Visualization version GIF version | ||
| Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpds2.x | ⊢ 𝑋 = (Base‘𝐺) |
| ngpds2.z | ⊢ 0 = (0g‘𝐺) |
| ngpds2.m | ⊢ − = (-g‘𝐺) |
| ngpds2.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| ngpds3 | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds2.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | ngpds2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | ngpds2.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ngpds2.d | . . 3 ⊢ 𝐷 = (dist‘𝐺) | |
| 5 | 1, 2, 3, 4 | ngpds2 24521 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ((𝐴 − 𝐵)𝐷 0 )) |
| 6 | ngpxms 24516 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) | |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ ∞MetSp) |
| 8 | ngpgrp 24514 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 9 | 1, 3 | grpsubcl 18933 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
| 10 | 8, 9 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 − 𝐵) ∈ 𝑋) |
| 11 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 12 | 1, 2 | grpidcl 18878 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ∈ 𝑋) |
| 14 | 1, 4 | xmssym 24380 | . . 3 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝐴 − 𝐵) ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐴 − 𝐵)𝐷 0 ) = ( 0 𝐷(𝐴 − 𝐵))) |
| 15 | 7, 10, 13, 14 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 − 𝐵)𝐷 0 ) = ( 0 𝐷(𝐴 − 𝐵))) |
| 16 | 5, 15 | eqtrd 2766 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 0gc0g 17343 Grpcgrp 18846 -gcsg 18848 ∞MetSpcxms 24232 NrmGrpcngp 24492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-0g 17345 df-topgen 17347 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-xms 24235 df-ms 24236 df-nm 24497 df-ngp 24498 |
| This theorem is referenced by: ngpds3r 24524 |
| Copyright terms: Public domain | W3C validator |