MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpds3 Structured version   Visualization version   GIF version

Theorem ngpds3 24086
Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ngpds2.x 𝑋 = (Base‘𝐺)
ngpds2.z 0 = (0g𝐺)
ngpds2.m = (-g𝐺)
ngpds2.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpds3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐴 𝐵)))

Proof of Theorem ngpds3
StepHypRef Expression
1 ngpds2.x . . 3 𝑋 = (Base‘𝐺)
2 ngpds2.z . . 3 0 = (0g𝐺)
3 ngpds2.m . . 3 = (-g𝐺)
4 ngpds2.d . . 3 𝐷 = (dist‘𝐺)
51, 2, 3, 4ngpds2 24084 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((𝐴 𝐵)𝐷 0 ))
6 ngpxms 24079 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
763ad2ant1 1134 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ ∞MetSp)
8 ngpgrp 24077 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
91, 3grpsubcl 18890 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
108, 9syl3an1 1164 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
1183ad2ant1 1134 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ Grp)
121, 2grpidcl 18837 . . . 4 (𝐺 ∈ Grp → 0𝑋)
1311, 12syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 0𝑋)
141, 4xmssym 23940 . . 3 ((𝐺 ∈ ∞MetSp ∧ (𝐴 𝐵) ∈ 𝑋0𝑋) → ((𝐴 𝐵)𝐷 0 ) = ( 0 𝐷(𝐴 𝐵)))
157, 10, 13, 14syl3anc 1372 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 𝐵)𝐷 0 ) = ( 0 𝐷(𝐴 𝐵)))
165, 15eqtrd 2773 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ( 0 𝐷(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6535  (class class class)co 7396  Basecbs 17131  distcds 17193  0gc0g 17372  Grpcgrp 18806  -gcsg 18808  ∞MetSpcxms 23792  NrmGrpcngp 24055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-n0 12460  df-z 12546  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-0g 17374  df-topgen 17376  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-sbg 18811  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-xms 23795  df-ms 23796  df-nm 24060  df-ngp 24061
This theorem is referenced by:  ngpds3r  24087
  Copyright terms: Public domain W3C validator