| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlimon | Structured version Visualization version GIF version | ||
| Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
| Ref | Expression |
|---|---|
| nlimon | ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . . 3 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 2 | dflim3 7826 | . . . . 5 ⊢ (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) | |
| 3 | 2 | baib 535 | . . . 4 ⊢ (Ord 𝑥 → (Lim 𝑥 ↔ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) |
| 4 | 3 | con2bid 354 | . . 3 ⊢ (Ord 𝑥 → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
| 6 | 5 | rabbiia 3412 | 1 ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ∅c0 4299 Ord word 6334 Oncon0 6335 Lim wlim 6336 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |