| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlimon | Structured version Visualization version GIF version | ||
| Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
| Ref | Expression |
|---|---|
| nlimon | ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6324 | . . 3 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 2 | dflim3 7786 | . . . . 5 ⊢ (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) | |
| 3 | 2 | baib 535 | . . . 4 ⊢ (Ord 𝑥 → (Lim 𝑥 ↔ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) |
| 4 | 3 | con2bid 354 | . . 3 ⊢ (Ord 𝑥 → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
| 6 | 5 | rabbiia 3400 | 1 ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ∅c0 4282 Ord word 6313 Oncon0 6314 Lim wlim 6315 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |