![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlimon | Structured version Visualization version GIF version |
Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
Ref | Expression |
---|---|
nlimon | ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6371 | . . 3 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
2 | dflim3 7832 | . . . . 5 ⊢ (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) | |
3 | 2 | baib 536 | . . . 4 ⊢ (Ord 𝑥 → (Lim 𝑥 ↔ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦))) |
4 | 3 | con2bid 354 | . . 3 ⊢ (Ord 𝑥 → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑥 ∈ On → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥)) |
6 | 5 | rabbiia 3436 | 1 ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {crab 3432 ∅c0 4321 Ord word 6360 Oncon0 6361 Lim wlim 6362 suc csuc 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |