MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimon Structured version   Visualization version   GIF version

Theorem nlimon 7585
Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
nlimon {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem nlimon
StepHypRef Expression
1 eloni 6182 . . 3 (𝑥 ∈ On → Ord 𝑥)
2 dflim3 7581 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
32baib 539 . . . 4 (Ord 𝑥 → (Lim 𝑥 ↔ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43con2bid 358 . . 3 (Ord 𝑥 → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥))
51, 4syl 17 . 2 (𝑥 ∈ On → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥))
65rabbiia 3373 1 {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wo 846   = wceq 1542  wcel 2114  wrex 3054  {crab 3057  c0 4211  Ord word 6171  Oncon0 6172  Lim wlim 6173  suc csuc 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator