MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimon Structured version   Visualization version   GIF version

Theorem nlimon 7888
Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
nlimon {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem nlimon
StepHypRef Expression
1 eloni 6405 . . 3 (𝑥 ∈ On → Ord 𝑥)
2 dflim3 7884 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
32baib 535 . . . 4 (Ord 𝑥 → (Lim 𝑥 ↔ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43con2bid 354 . . 3 (Ord 𝑥 → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥))
51, 4syl 17 . 2 (𝑥 ∈ On → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) ↔ ¬ Lim 𝑥))
65rabbiia 3447 1 {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 846   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  c0 4352  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator