Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Structured version   Visualization version   GIF version

Theorem limuni3 7557
 Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limuni3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 6176 . . . . . . 7 (𝑥 = 𝑧 → (Lim 𝑥 ↔ Lim 𝑧))
21rspcv 3566 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → Lim 𝑧))
3 vex 3444 . . . . . . 7 𝑧 ∈ V
4 limelon 6227 . . . . . . 7 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
53, 4mpan 689 . . . . . 6 (Lim 𝑧𝑧 ∈ On)
62, 5syl6com 37 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴𝑧 ∈ On))
76ssrdv 3922 . . . 4 (∀𝑥𝐴 Lim 𝑥𝐴 ⊆ On)
8 ssorduni 7490 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
97, 8syl 17 . . 3 (∀𝑥𝐴 Lim 𝑥 → Ord 𝐴)
109adantl 485 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Ord 𝐴)
11 n0 4262 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
12 0ellim 6226 . . . . . . 7 (Lim 𝑧 → ∅ ∈ 𝑧)
13 elunii 4808 . . . . . . . 8 ((∅ ∈ 𝑧𝑧𝐴) → ∅ ∈ 𝐴)
1413expcom 417 . . . . . . 7 (𝑧𝐴 → (∅ ∈ 𝑧 → ∅ ∈ 𝐴))
1512, 14syl5 34 . . . . . 6 (𝑧𝐴 → (Lim 𝑧 → ∅ ∈ 𝐴))
162, 15syld 47 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1716exlimiv 1931 . . . 4 (∃𝑧 𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1811, 17sylbi 220 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1918imp 410 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∅ ∈ 𝐴)
20 eluni2 4807 . . . . 5 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
211rspccv 3568 . . . . . . 7 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → Lim 𝑧))
22 limsuc 7554 . . . . . . . . . . 11 (Lim 𝑧 → (𝑦𝑧 ↔ suc 𝑦𝑧))
2322anbi1d 632 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) ↔ (suc 𝑦𝑧𝑧𝐴)))
24 elunii 4808 . . . . . . . . . 10 ((suc 𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴)
2523, 24syl6bi 256 . . . . . . . . 9 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴))
2625expd 419 . . . . . . . 8 (Lim 𝑧 → (𝑦𝑧 → (𝑧𝐴 → suc 𝑦 𝐴)))
2726com3r 87 . . . . . . 7 (𝑧𝐴 → (Lim 𝑧 → (𝑦𝑧 → suc 𝑦 𝐴)))
2821, 27sylcom 30 . . . . . 6 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → (𝑦𝑧 → suc 𝑦 𝐴)))
2928rexlimdv 3242 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (∃𝑧𝐴 𝑦𝑧 → suc 𝑦 𝐴))
3020, 29syl5bi 245 . . . 4 (∀𝑥𝐴 Lim 𝑥 → (𝑦 𝐴 → suc 𝑦 𝐴))
3130ralrimiv 3148 . . 3 (∀𝑥𝐴 Lim 𝑥 → ∀𝑦 𝐴 suc 𝑦 𝐴)
3231adantl 485 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∀𝑦 𝐴 suc 𝑦 𝐴)
33 dflim4 7553 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑦 𝐴 suc 𝑦 𝐴))
3410, 19, 32, 33syl3anbrc 1340 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3882  ∅c0 4245  ∪ cuni 4803  Ord word 6163  Oncon0 6164  Lim wlim 6165  suc csuc 6166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3722  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator