MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Structured version   Visualization version   GIF version

Theorem limuni3 7862
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limuni3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 6388 . . . . . . 7 (𝑥 = 𝑧 → (Lim 𝑥 ↔ Lim 𝑧))
21rspcv 3604 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → Lim 𝑧))
3 vex 3466 . . . . . . 7 𝑧 ∈ V
4 limelon 6440 . . . . . . 7 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
53, 4mpan 688 . . . . . 6 (Lim 𝑧𝑧 ∈ On)
62, 5syl6com 37 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴𝑧 ∈ On))
76ssrdv 3985 . . . 4 (∀𝑥𝐴 Lim 𝑥𝐴 ⊆ On)
8 ssorduni 7787 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
97, 8syl 17 . . 3 (∀𝑥𝐴 Lim 𝑥 → Ord 𝐴)
109adantl 480 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Ord 𝐴)
11 n0 4349 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
12 0ellim 6439 . . . . . . 7 (Lim 𝑧 → ∅ ∈ 𝑧)
13 elunii 4918 . . . . . . . 8 ((∅ ∈ 𝑧𝑧𝐴) → ∅ ∈ 𝐴)
1413expcom 412 . . . . . . 7 (𝑧𝐴 → (∅ ∈ 𝑧 → ∅ ∈ 𝐴))
1512, 14syl5 34 . . . . . 6 (𝑧𝐴 → (Lim 𝑧 → ∅ ∈ 𝐴))
162, 15syld 47 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1716exlimiv 1926 . . . 4 (∃𝑧 𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1811, 17sylbi 216 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1918imp 405 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∅ ∈ 𝐴)
20 eluni2 4917 . . . . 5 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
211rspccv 3605 . . . . . . 7 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → Lim 𝑧))
22 limsuc 7859 . . . . . . . . . . 11 (Lim 𝑧 → (𝑦𝑧 ↔ suc 𝑦𝑧))
2322anbi1d 629 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) ↔ (suc 𝑦𝑧𝑧𝐴)))
24 elunii 4918 . . . . . . . . . 10 ((suc 𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴)
2523, 24biimtrdi 252 . . . . . . . . 9 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴))
2625expd 414 . . . . . . . 8 (Lim 𝑧 → (𝑦𝑧 → (𝑧𝐴 → suc 𝑦 𝐴)))
2726com3r 87 . . . . . . 7 (𝑧𝐴 → (Lim 𝑧 → (𝑦𝑧 → suc 𝑦 𝐴)))
2821, 27sylcom 30 . . . . . 6 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → (𝑦𝑧 → suc 𝑦 𝐴)))
2928rexlimdv 3143 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (∃𝑧𝐴 𝑦𝑧 → suc 𝑦 𝐴))
3020, 29biimtrid 241 . . . 4 (∀𝑥𝐴 Lim 𝑥 → (𝑦 𝐴 → suc 𝑦 𝐴))
3130ralrimiv 3135 . . 3 (∀𝑥𝐴 Lim 𝑥 → ∀𝑦 𝐴 suc 𝑦 𝐴)
3231adantl 480 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∀𝑦 𝐴 suc 𝑦 𝐴)
33 dflim4 7858 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑦 𝐴 suc 𝑦 𝐴))
3410, 19, 32, 33syl3anbrc 1340 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1774  wcel 2099  wne 2930  wral 3051  wrex 3060  Vcvv 3462  wss 3947  c0 4325   cuni 4913  Ord word 6375  Oncon0 6376  Lim wlim 6377  suc csuc 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-tr 5271  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator