MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Structured version   Visualization version   GIF version

Theorem limuni3 7674
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limuni3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 6263 . . . . . . 7 (𝑥 = 𝑧 → (Lim 𝑥 ↔ Lim 𝑧))
21rspcv 3547 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → Lim 𝑧))
3 vex 3426 . . . . . . 7 𝑧 ∈ V
4 limelon 6314 . . . . . . 7 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
53, 4mpan 686 . . . . . 6 (Lim 𝑧𝑧 ∈ On)
62, 5syl6com 37 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴𝑧 ∈ On))
76ssrdv 3923 . . . 4 (∀𝑥𝐴 Lim 𝑥𝐴 ⊆ On)
8 ssorduni 7606 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
97, 8syl 17 . . 3 (∀𝑥𝐴 Lim 𝑥 → Ord 𝐴)
109adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Ord 𝐴)
11 n0 4277 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
12 0ellim 6313 . . . . . . 7 (Lim 𝑧 → ∅ ∈ 𝑧)
13 elunii 4841 . . . . . . . 8 ((∅ ∈ 𝑧𝑧𝐴) → ∅ ∈ 𝐴)
1413expcom 413 . . . . . . 7 (𝑧𝐴 → (∅ ∈ 𝑧 → ∅ ∈ 𝐴))
1512, 14syl5 34 . . . . . 6 (𝑧𝐴 → (Lim 𝑧 → ∅ ∈ 𝐴))
162, 15syld 47 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1716exlimiv 1934 . . . 4 (∃𝑧 𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1811, 17sylbi 216 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1918imp 406 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∅ ∈ 𝐴)
20 eluni2 4840 . . . . 5 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
211rspccv 3549 . . . . . . 7 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → Lim 𝑧))
22 limsuc 7671 . . . . . . . . . . 11 (Lim 𝑧 → (𝑦𝑧 ↔ suc 𝑦𝑧))
2322anbi1d 629 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) ↔ (suc 𝑦𝑧𝑧𝐴)))
24 elunii 4841 . . . . . . . . . 10 ((suc 𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴)
2523, 24syl6bi 252 . . . . . . . . 9 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴))
2625expd 415 . . . . . . . 8 (Lim 𝑧 → (𝑦𝑧 → (𝑧𝐴 → suc 𝑦 𝐴)))
2726com3r 87 . . . . . . 7 (𝑧𝐴 → (Lim 𝑧 → (𝑦𝑧 → suc 𝑦 𝐴)))
2821, 27sylcom 30 . . . . . 6 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → (𝑦𝑧 → suc 𝑦 𝐴)))
2928rexlimdv 3211 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (∃𝑧𝐴 𝑦𝑧 → suc 𝑦 𝐴))
3020, 29syl5bi 241 . . . 4 (∀𝑥𝐴 Lim 𝑥 → (𝑦 𝐴 → suc 𝑦 𝐴))
3130ralrimiv 3106 . . 3 (∀𝑥𝐴 Lim 𝑥 → ∀𝑦 𝐴 suc 𝑦 𝐴)
3231adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∀𝑦 𝐴 suc 𝑦 𝐴)
33 dflim4 7670 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑦 𝐴 suc 𝑦 𝐴))
3410, 19, 32, 33syl3anbrc 1341 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253   cuni 4836  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator