MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Structured version   Visualization version   GIF version

Theorem limuni3 7791
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limuni3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 6326 . . . . . . 7 (𝑥 = 𝑧 → (Lim 𝑥 ↔ Lim 𝑧))
21rspcv 3569 . . . . . 6 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → Lim 𝑧))
3 vex 3441 . . . . . . 7 𝑧 ∈ V
4 limelon 6379 . . . . . . 7 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
53, 4mpan 690 . . . . . 6 (Lim 𝑧𝑧 ∈ On)
62, 5syl6com 37 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴𝑧 ∈ On))
76ssrdv 3936 . . . 4 (∀𝑥𝐴 Lim 𝑥𝐴 ⊆ On)
8 ssorduni 7721 . . . 4 (𝐴 ⊆ On → Ord 𝐴)
97, 8syl 17 . . 3 (∀𝑥𝐴 Lim 𝑥 → Ord 𝐴)
109adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Ord 𝐴)
11 n0 4302 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
12 0ellim 6378 . . . . . . 7 (Lim 𝑧 → ∅ ∈ 𝑧)
13 elunii 4865 . . . . . . . 8 ((∅ ∈ 𝑧𝑧𝐴) → ∅ ∈ 𝐴)
1413expcom 413 . . . . . . 7 (𝑧𝐴 → (∅ ∈ 𝑧 → ∅ ∈ 𝐴))
1512, 14syl5 34 . . . . . 6 (𝑧𝐴 → (Lim 𝑧 → ∅ ∈ 𝐴))
162, 15syld 47 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1716exlimiv 1931 . . . 4 (∃𝑧 𝑧𝐴 → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1811, 17sylbi 217 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 Lim 𝑥 → ∅ ∈ 𝐴))
1918imp 406 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∅ ∈ 𝐴)
20 eluni2 4864 . . . . 5 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
211rspccv 3570 . . . . . . 7 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → Lim 𝑧))
22 limsuc 7788 . . . . . . . . . . 11 (Lim 𝑧 → (𝑦𝑧 ↔ suc 𝑦𝑧))
2322anbi1d 631 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) ↔ (suc 𝑦𝑧𝑧𝐴)))
24 elunii 4865 . . . . . . . . . 10 ((suc 𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴)
2523, 24biimtrdi 253 . . . . . . . . 9 (Lim 𝑧 → ((𝑦𝑧𝑧𝐴) → suc 𝑦 𝐴))
2625expd 415 . . . . . . . 8 (Lim 𝑧 → (𝑦𝑧 → (𝑧𝐴 → suc 𝑦 𝐴)))
2726com3r 87 . . . . . . 7 (𝑧𝐴 → (Lim 𝑧 → (𝑦𝑧 → suc 𝑦 𝐴)))
2821, 27sylcom 30 . . . . . 6 (∀𝑥𝐴 Lim 𝑥 → (𝑧𝐴 → (𝑦𝑧 → suc 𝑦 𝐴)))
2928rexlimdv 3132 . . . . 5 (∀𝑥𝐴 Lim 𝑥 → (∃𝑧𝐴 𝑦𝑧 → suc 𝑦 𝐴))
3020, 29biimtrid 242 . . . 4 (∀𝑥𝐴 Lim 𝑥 → (𝑦 𝐴 → suc 𝑦 𝐴))
3130ralrimiv 3124 . . 3 (∀𝑥𝐴 Lim 𝑥 → ∀𝑦 𝐴 suc 𝑦 𝐴)
3231adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → ∀𝑦 𝐴 suc 𝑦 𝐴)
33 dflim4 7787 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑦 𝐴 suc 𝑦 𝐴))
3410, 19, 32, 33syl3anbrc 1344 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Lim 𝑥) → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282   cuni 4860  Ord word 6313  Oncon0 6314  Lim wlim 6315  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator