![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgdsdir | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmul.t | ⊢ · = (.r‘𝑅) |
nrgdsdi.d | ⊢ 𝐷 = (dist‘𝑅) |
Ref | Expression |
---|---|
nrgdsdir | ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmRing) | |
2 | nrgring 24705 | . . . . . . 7 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Ring) |
4 | ringgrp 20265 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Grp) |
6 | simpr1 1194 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
7 | simpr2 1195 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
8 | nmmul.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
9 | eqid 2740 | . . . . . 6 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
10 | 8, 9 | grpsubcl 19060 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝑅)𝐵) ∈ 𝑋) |
11 | 5, 6, 7, 10 | syl3anc 1371 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(-g‘𝑅)𝐵) ∈ 𝑋) |
12 | simpr3 1196 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
13 | nmmul.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
14 | nmmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
15 | 8, 13, 14 | nmmul 24706 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴(-g‘𝑅)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
16 | 1, 11, 12, 15 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
17 | 8, 14, 9, 3, 6, 7, 12 | ringsubdir 20331 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(-g‘𝑅)𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶))) |
18 | 17 | fveq2d 6924 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
19 | 16, 18 | eqtr3d 2782 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
20 | nrgngp 24704 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmGrp) |
22 | nrgdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑅) | |
23 | 13, 8, 9, 22 | ngpds 24638 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝑅)𝐵))) |
24 | 21, 6, 7, 23 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝑅)𝐵))) |
25 | 24 | oveq1d 7463 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
26 | 8, 14 | ringcl 20277 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
27 | 3, 6, 12, 26 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐶) ∈ 𝑋) |
28 | 8, 14 | ringcl 20277 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 · 𝐶) ∈ 𝑋) |
29 | 3, 7, 12, 28 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 · 𝐶) ∈ 𝑋) |
30 | 13, 8, 9, 22 | ngpds 24638 | . . 3 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
31 | 21, 27, 29, 30 | syl3anc 1371 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
32 | 19, 25, 31 | 3eqtr4d 2790 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 · cmul 11189 Basecbs 17258 .rcmulr 17312 distcds 17320 Grpcgrp 18973 -gcsg 18975 Ringcrg 20260 normcnm 24610 NrmGrpcngp 24611 NrmRingcnrg 24613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-abv 20832 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-nrg 24619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |