Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgdsdir | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmul.t | ⊢ · = (.r‘𝑅) |
nrgdsdi.d | ⊢ 𝐷 = (dist‘𝑅) |
Ref | Expression |
---|---|
nrgdsdir | ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmRing) | |
2 | nrgring 23365 | . . . . . . 7 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
3 | 2 | adantr 484 | . . . . . 6 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Ring) |
4 | ringgrp 19370 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Grp) |
6 | simpr1 1191 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
7 | simpr2 1192 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
8 | nmmul.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
9 | eqid 2758 | . . . . . 6 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
10 | 8, 9 | grpsubcl 18246 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝑅)𝐵) ∈ 𝑋) |
11 | 5, 6, 7, 10 | syl3anc 1368 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(-g‘𝑅)𝐵) ∈ 𝑋) |
12 | simpr3 1193 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
13 | nmmul.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
14 | nmmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
15 | 8, 13, 14 | nmmul 23366 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴(-g‘𝑅)𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
16 | 1, 11, 12, 15 | syl3anc 1368 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
17 | 8, 14, 9, 3, 6, 7, 12 | rngsubdir 19421 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(-g‘𝑅)𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶))) |
18 | 17 | fveq2d 6662 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘((𝐴(-g‘𝑅)𝐵) · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
19 | 16, 18 | eqtr3d 2795 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
20 | nrgngp 23364 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
21 | 20 | adantr 484 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmGrp) |
22 | nrgdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑅) | |
23 | 13, 8, 9, 22 | ngpds 23306 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝑅)𝐵))) |
24 | 21, 6, 7, 23 | syl3anc 1368 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝑅)𝐵))) |
25 | 24 | oveq1d 7165 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝑁‘(𝐴(-g‘𝑅)𝐵)) · (𝑁‘𝐶))) |
26 | 8, 14 | ringcl 19382 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
27 | 3, 6, 12, 26 | syl3anc 1368 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐶) ∈ 𝑋) |
28 | 8, 14 | ringcl 19382 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 · 𝐶) ∈ 𝑋) |
29 | 3, 7, 12, 28 | syl3anc 1368 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 · 𝐶) ∈ 𝑋) |
30 | 13, 8, 9, 22 | ngpds 23306 | . . 3 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
31 | 21, 27, 29, 30 | syl3anc 1368 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g‘𝑅)(𝐵 · 𝐶)))) |
32 | 19, 25, 31 | 3eqtr4d 2803 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵) · (𝑁‘𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 · cmul 10580 Basecbs 16541 .rcmulr 16624 distcds 16632 Grpcgrp 18169 -gcsg 18171 Ringcrg 19365 normcnm 23278 NrmGrpcngp 23279 NrmRingcnrg 23281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-0g 16773 df-topgen 16775 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mgp 19308 df-ur 19320 df-ring 19367 df-abv 19656 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-xms 23022 df-ms 23023 df-nm 23284 df-ngp 23285 df-nrg 23287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |