MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgdsdir Structured version   Visualization version   GIF version

Theorem nrgdsdir 24687
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
nrgdsdi.d 𝐷 = (dist‘𝑅)
Assertion
Ref Expression
nrgdsdir ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)))

Proof of Theorem nrgdsdir
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmRing)
2 nrgring 24684 . . . . . . 7 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
32adantr 480 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Ring)
4 ringgrp 20235 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
53, 4syl 17 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Grp)
6 simpr1 1195 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
7 simpr2 1196 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
8 nmmul.x . . . . . 6 𝑋 = (Base‘𝑅)
9 eqid 2737 . . . . . 6 (-g𝑅) = (-g𝑅)
108, 9grpsubcl 19038 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑅)𝐵) ∈ 𝑋)
115, 6, 7, 10syl3anc 1373 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(-g𝑅)𝐵) ∈ 𝑋)
12 simpr3 1197 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
13 nmmul.n . . . . 5 𝑁 = (norm‘𝑅)
14 nmmul.t . . . . 5 · = (.r𝑅)
158, 13, 14nmmul 24685 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴(-g𝑅)𝐵) ∈ 𝑋𝐶𝑋) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
161, 11, 12, 15syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
178, 14, 9, 3, 6, 7, 12ringsubdir 20305 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴(-g𝑅)𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶)))
1817fveq2d 6910 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
1916, 18eqtr3d 2779 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
20 nrgngp 24683 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2120adantr 480 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmGrp)
22 nrgdsdi.d . . . . 5 𝐷 = (dist‘𝑅)
2313, 8, 9, 22ngpds 24617 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝑅)𝐵)))
2421, 6, 7, 23syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝑅)𝐵)))
2524oveq1d 7446 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
268, 14ringcl 20247 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
273, 6, 12, 26syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐶) ∈ 𝑋)
288, 14ringcl 20247 . . . 4 ((𝑅 ∈ Ring ∧ 𝐵𝑋𝐶𝑋) → (𝐵 · 𝐶) ∈ 𝑋)
293, 7, 12, 28syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 · 𝐶) ∈ 𝑋)
3013, 8, 9, 22ngpds 24617 . . 3 ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
3121, 27, 29, 30syl3anc 1373 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
3219, 25, 313eqtr4d 2787 1 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431   · cmul 11160  Basecbs 17247  .rcmulr 17298  distcds 17306  Grpcgrp 18951  -gcsg 18953  Ringcrg 20230  normcnm 24589  NrmGrpcngp 24590  NrmRingcnrg 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-topgen 17488  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-abv 20810  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nrg 24598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator