MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Structured version   Visualization version   GIF version

Theorem nmdvr 24591
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x 𝑋 = (Base‘𝑅)
nmdvr.n 𝑁 = (norm‘𝑅)
nmdvr.u 𝑈 = (Unit‘𝑅)
nmdvr.d / = (/r𝑅)
Assertion
Ref Expression
nmdvr (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmRing)
2 simprl 770 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐴𝑋)
3 nrgring 24584 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ Ring)
5 simprr 772 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑈)
6 nmdvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 eqid 2731 . . . . . 6 (invr𝑅) = (invr𝑅)
8 nmdvr.x . . . . . 6 𝑋 = (Base‘𝑅)
96, 7, 8ringinvcl 20316 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐵𝑈) → ((invr𝑅)‘𝐵) ∈ 𝑋)
104, 5, 9syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((invr𝑅)‘𝐵) ∈ 𝑋)
11 nmdvr.n . . . . 5 𝑁 = (norm‘𝑅)
12 eqid 2731 . . . . 5 (.r𝑅) = (.r𝑅)
138, 11, 12nmmul 24585 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((invr𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
141, 2, 10, 13syl3anc 1373 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
15 simplr 768 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NzRing)
1611, 6, 7nminvr 24590 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
171, 15, 5, 16syl3anc 1373 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
1817oveq2d 7368 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
1914, 18eqtrd 2766 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
20 nmdvr.d . . . . 5 / = (/r𝑅)
218, 12, 6, 7, 20dvrval 20327 . . . 4 ((𝐴𝑋𝐵𝑈) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2221adantl 481 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2322fveq2d 6832 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))))
24 nrgngp 24583 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2524ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmGrp)
268, 11nmcl 24537 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
2725, 2, 26syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℝ)
2827recnd 11146 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℂ)
298, 6unitss 20300 . . . . . 6 𝑈𝑋
3029, 5sselid 3927 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑋)
318, 11nmcl 24537 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
3225, 30, 31syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℝ)
3332recnd 11146 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℂ)
3411, 6unitnmn0 24589 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
35343expa 1118 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
3635adantrl 716 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ≠ 0)
3728, 33, 36divrecd 11906 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) / (𝑁𝐵)) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
3819, 23, 373eqtr4d 2776 1 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6487  (class class class)co 7352  cr 11011  0cc0 11012  1c1 11013   · cmul 11017   / cdiv 11780  Basecbs 17126  .rcmulr 17168  Ringcrg 20157  Unitcui 20279  invrcinvr 20311  /rcdvr 20324  NzRingcnzr 20433  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-inf 9333  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ico 13257  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-0g 17351  df-topgen 17353  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-grp 18855  df-minusg 18856  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-nzr 20434  df-abv 20730  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nrg 24506
This theorem is referenced by:  qqhnm  34010
  Copyright terms: Public domain W3C validator