| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmdvr | Structured version Visualization version GIF version | ||
| Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmdvr.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmdvr.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmdvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
| nmdvr.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| nmdvr | ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmRing) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24551 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 5 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑈) | |
| 6 | nmdvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | nmdvr.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 9 | 6, 7, 8 | ringinvcl 20301 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 10 | 4, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 11 | nmdvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 8, 11, 12 | nmmul 24552 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((invr‘𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 14 | 1, 2, 10, 13 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 15 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NzRing) | |
| 16 | 11, 6, 7 | nminvr 24557 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 17 | 1, 15, 5, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 18 | 17 | oveq2d 7403 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 19 | 14, 18 | eqtrd 2764 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 20 | nmdvr.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 21 | 8, 12, 6, 7, 20 | dvrval 20312 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 22 | 21 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 23 | 22 | fveq2d 6862 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵)))) |
| 24 | nrgngp 24550 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmGrp) |
| 26 | 8, 11 | nmcl 24504 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 27 | 25, 2, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11202 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℂ) |
| 29 | 8, 6 | unitss 20285 | . . . . . 6 ⊢ 𝑈 ⊆ 𝑋 |
| 30 | 29, 5 | sselid 3944 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑋) |
| 31 | 8, 11 | nmcl 24504 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℝ) |
| 33 | 32 | recnd 11202 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℂ) |
| 34 | 11, 6 | unitnmn0 24556 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 35 | 34 | 3expa 1118 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 36 | 35 | adantrl 716 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ≠ 0) |
| 37 | 28, 33, 36 | divrecd 11961 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) / (𝑁‘𝐵)) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 38 | 19, 23, 37 | 3eqtr4d 2774 | 1 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 Basecbs 17179 .rcmulr 17221 Ringcrg 20142 Unitcui 20264 invrcinvr 20296 /rcdvr 20309 NzRingcnzr 20421 normcnm 24464 NrmGrpcngp 24465 NrmRingcnrg 24467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-nzr 20422 df-abv 20718 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nrg 24473 |
| This theorem is referenced by: qqhnm 33980 |
| Copyright terms: Public domain | W3C validator |