![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmdvr | Structured version Visualization version GIF version |
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmdvr.x | ⊢ 𝑋 = (Base‘𝑅) |
nmdvr.n | ⊢ 𝑁 = (norm‘𝑅) |
nmdvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
nmdvr.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
nmdvr | ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmRing) | |
2 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
3 | nrgring 24699 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ Ring) |
5 | simprr 773 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑈) | |
6 | nmdvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | eqid 2734 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
8 | nmdvr.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
9 | 6, 7, 8 | ringinvcl 20408 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
10 | 4, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
11 | nmdvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
12 | eqid 2734 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
13 | 8, 11, 12 | nmmul 24700 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((invr‘𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
14 | 1, 2, 10, 13 | syl3anc 1370 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
15 | simplr 769 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NzRing) | |
16 | 11, 6, 7 | nminvr 24705 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
17 | 1, 15, 5, 16 | syl3anc 1370 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
18 | 17 | oveq2d 7446 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
19 | 14, 18 | eqtrd 2774 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
20 | nmdvr.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
21 | 8, 12, 6, 7, 20 | dvrval 20419 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
22 | 21 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
23 | 22 | fveq2d 6910 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵)))) |
24 | nrgngp 24698 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmGrp) |
26 | 8, 11 | nmcl 24644 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
27 | 25, 2, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℝ) |
28 | 27 | recnd 11286 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℂ) |
29 | 8, 6 | unitss 20392 | . . . . . 6 ⊢ 𝑈 ⊆ 𝑋 |
30 | 29, 5 | sselid 3992 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑋) |
31 | 8, 11 | nmcl 24644 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℝ) |
33 | 32 | recnd 11286 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℂ) |
34 | 11, 6 | unitnmn0 24704 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
35 | 34 | 3expa 1117 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
36 | 35 | adantrl 716 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ≠ 0) |
37 | 28, 33, 36 | divrecd 12043 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) / (𝑁‘𝐵)) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
38 | 19, 23, 37 | 3eqtr4d 2784 | 1 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 1c1 11153 · cmul 11157 / cdiv 11917 Basecbs 17244 .rcmulr 17298 Ringcrg 20250 Unitcui 20371 invrcinvr 20403 /rcdvr 20416 NzRingcnzr 20528 normcnm 24604 NrmGrpcngp 24605 NrmRingcnrg 24607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ico 13389 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-dvr 20417 df-nzr 20529 df-abv 20826 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-nrg 24613 |
This theorem is referenced by: qqhnm 33952 |
Copyright terms: Public domain | W3C validator |