| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmdvr | Structured version Visualization version GIF version | ||
| Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmdvr.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmdvr.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmdvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
| nmdvr.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| nmdvr | ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmRing) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24557 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 5 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑈) | |
| 6 | nmdvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | nmdvr.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 9 | 6, 7, 8 | ringinvcl 20307 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 10 | 4, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 11 | nmdvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 8, 11, 12 | nmmul 24558 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((invr‘𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 14 | 1, 2, 10, 13 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 15 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NzRing) | |
| 16 | 11, 6, 7 | nminvr 24563 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 17 | 1, 15, 5, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 18 | 17 | oveq2d 7405 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 19 | 14, 18 | eqtrd 2765 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 20 | nmdvr.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 21 | 8, 12, 6, 7, 20 | dvrval 20318 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 22 | 21 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 23 | 22 | fveq2d 6864 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵)))) |
| 24 | nrgngp 24556 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmGrp) |
| 26 | 8, 11 | nmcl 24510 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 27 | 25, 2, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11208 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℂ) |
| 29 | 8, 6 | unitss 20291 | . . . . . 6 ⊢ 𝑈 ⊆ 𝑋 |
| 30 | 29, 5 | sselid 3946 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑋) |
| 31 | 8, 11 | nmcl 24510 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℝ) |
| 33 | 32 | recnd 11208 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℂ) |
| 34 | 11, 6 | unitnmn0 24562 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 35 | 34 | 3expa 1118 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 36 | 35 | adantrl 716 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ≠ 0) |
| 37 | 28, 33, 36 | divrecd 11967 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) / (𝑁‘𝐵)) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 38 | 19, 23, 37 | 3eqtr4d 2775 | 1 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 1c1 11075 · cmul 11079 / cdiv 11841 Basecbs 17185 .rcmulr 17227 Ringcrg 20148 Unitcui 20270 invrcinvr 20302 /rcdvr 20315 NzRingcnzr 20427 normcnm 24470 NrmGrpcngp 24471 NrmRingcnrg 24473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ico 13318 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-topgen 17412 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-nzr 20428 df-abv 20724 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-xms 24214 df-ms 24215 df-nm 24476 df-ngp 24477 df-nrg 24479 |
| This theorem is referenced by: qqhnm 33986 |
| Copyright terms: Public domain | W3C validator |