| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmdvr | Structured version Visualization version GIF version | ||
| Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmdvr.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmdvr.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmdvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
| nmdvr.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| nmdvr | ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmRing) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24600 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 5 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑈) | |
| 6 | nmdvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | eqid 2735 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | nmdvr.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 9 | 6, 7, 8 | ringinvcl 20350 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 10 | 4, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 11 | nmdvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 12 | eqid 2735 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 8, 11, 12 | nmmul 24601 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((invr‘𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 14 | 1, 2, 10, 13 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 15 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NzRing) | |
| 16 | 11, 6, 7 | nminvr 24606 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 17 | 1, 15, 5, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 18 | 17 | oveq2d 7419 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 19 | 14, 18 | eqtrd 2770 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 20 | nmdvr.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 21 | 8, 12, 6, 7, 20 | dvrval 20361 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 22 | 21 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 23 | 22 | fveq2d 6879 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵)))) |
| 24 | nrgngp 24599 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmGrp) |
| 26 | 8, 11 | nmcl 24553 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 27 | 25, 2, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11261 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℂ) |
| 29 | 8, 6 | unitss 20334 | . . . . . 6 ⊢ 𝑈 ⊆ 𝑋 |
| 30 | 29, 5 | sselid 3956 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑋) |
| 31 | 8, 11 | nmcl 24553 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℝ) |
| 33 | 32 | recnd 11261 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℂ) |
| 34 | 11, 6 | unitnmn0 24605 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 35 | 34 | 3expa 1118 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 36 | 35 | adantrl 716 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ≠ 0) |
| 37 | 28, 33, 36 | divrecd 12018 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) / (𝑁‘𝐵)) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 38 | 19, 23, 37 | 3eqtr4d 2780 | 1 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 · cmul 11132 / cdiv 11892 Basecbs 17226 .rcmulr 17270 Ringcrg 20191 Unitcui 20313 invrcinvr 20345 /rcdvr 20358 NzRingcnzr 20470 normcnm 24513 NrmGrpcngp 24514 NrmRingcnrg 24516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ico 13366 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-0g 17453 df-topgen 17455 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-nzr 20471 df-abv 20767 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-nrg 24522 |
| This theorem is referenced by: qqhnm 33967 |
| Copyright terms: Public domain | W3C validator |