MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Structured version   Visualization version   GIF version

Theorem nmdvr 24574
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x 𝑋 = (Base‘𝑅)
nmdvr.n 𝑁 = (norm‘𝑅)
nmdvr.u 𝑈 = (Unit‘𝑅)
nmdvr.d / = (/r𝑅)
Assertion
Ref Expression
nmdvr (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmRing)
2 simprl 770 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐴𝑋)
3 nrgring 24567 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ Ring)
5 simprr 772 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑈)
6 nmdvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 eqid 2729 . . . . . 6 (invr𝑅) = (invr𝑅)
8 nmdvr.x . . . . . 6 𝑋 = (Base‘𝑅)
96, 7, 8ringinvcl 20295 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐵𝑈) → ((invr𝑅)‘𝐵) ∈ 𝑋)
104, 5, 9syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((invr𝑅)‘𝐵) ∈ 𝑋)
11 nmdvr.n . . . . 5 𝑁 = (norm‘𝑅)
12 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
138, 11, 12nmmul 24568 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((invr𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
141, 2, 10, 13syl3anc 1373 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
15 simplr 768 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NzRing)
1611, 6, 7nminvr 24573 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
171, 15, 5, 16syl3anc 1373 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
1817oveq2d 7369 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
1914, 18eqtrd 2764 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
20 nmdvr.d . . . . 5 / = (/r𝑅)
218, 12, 6, 7, 20dvrval 20306 . . . 4 ((𝐴𝑋𝐵𝑈) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2221adantl 481 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2322fveq2d 6830 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))))
24 nrgngp 24566 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2524ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmGrp)
268, 11nmcl 24520 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
2725, 2, 26syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℝ)
2827recnd 11162 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℂ)
298, 6unitss 20279 . . . . . 6 𝑈𝑋
3029, 5sselid 3935 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑋)
318, 11nmcl 24520 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
3225, 30, 31syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℝ)
3332recnd 11162 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℂ)
3411, 6unitnmn0 24572 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
35343expa 1118 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
3635adantrl 716 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ≠ 0)
3728, 33, 36divrecd 11921 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) / (𝑁𝐵)) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
3819, 23, 373eqtr4d 2774 1 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  Basecbs 17138  .rcmulr 17180  Ringcrg 20136  Unitcui 20258  invrcinvr 20290  /rcdvr 20303  NzRingcnzr 20415  normcnm 24480  NrmGrpcngp 24481  NrmRingcnrg 24483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-topgen 17365  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-abv 20712  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224  df-ms 24225  df-nm 24486  df-ngp 24487  df-nrg 24489
This theorem is referenced by:  qqhnm  33956
  Copyright terms: Public domain W3C validator