| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmdvr | Structured version Visualization version GIF version | ||
| Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmdvr.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmdvr.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmdvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
| nmdvr.d | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| nmdvr | ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 767 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmRing) | |
| 2 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24684 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ Ring) |
| 5 | simprr 773 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑈) | |
| 6 | nmdvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | eqid 2737 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 8 | nmdvr.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 9 | 6, 7, 8 | ringinvcl 20392 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 10 | 4, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((invr‘𝑅)‘𝐵) ∈ 𝑋) |
| 11 | nmdvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 12 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 8, 11, 12 | nmmul 24685 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((invr‘𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 14 | 1, 2, 10, 13 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵)))) |
| 15 | simplr 769 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NzRing) | |
| 16 | 11, 6, 7 | nminvr 24690 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 17 | 1, 15, 5, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘((invr‘𝑅)‘𝐵)) = (1 / (𝑁‘𝐵))) |
| 18 | 17 | oveq2d 7447 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) · (𝑁‘((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 19 | 14, 18 | eqtrd 2777 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 20 | nmdvr.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 21 | 8, 12, 6, 7, 20 | dvrval 20403 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 22 | 21 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝐴 / 𝐵) = (𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵))) |
| 23 | 22 | fveq2d 6910 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r‘𝑅)((invr‘𝑅)‘𝐵)))) |
| 24 | nrgngp 24683 | . . . . . 6 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 25 | 24 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝑅 ∈ NrmGrp) |
| 26 | 8, 11 | nmcl 24629 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 27 | 25, 2, 26 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℝ) |
| 28 | 27 | recnd 11289 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐴) ∈ ℂ) |
| 29 | 8, 6 | unitss 20376 | . . . . . 6 ⊢ 𝑈 ⊆ 𝑋 |
| 30 | 29, 5 | sselid 3981 | . . . . 5 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → 𝐵 ∈ 𝑋) |
| 31 | 8, 11 | nmcl 24629 | . . . . 5 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ ℝ) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℝ) |
| 33 | 32 | recnd 11289 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ∈ ℂ) |
| 34 | 11, 6 | unitnmn0 24689 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 35 | 34 | 3expa 1119 | . . . 4 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵 ∈ 𝑈) → (𝑁‘𝐵) ≠ 0) |
| 36 | 35 | adantrl 716 | . . 3 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘𝐵) ≠ 0) |
| 37 | 28, 33, 36 | divrecd 12046 | . 2 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → ((𝑁‘𝐴) / (𝑁‘𝐵)) = ((𝑁‘𝐴) · (1 / (𝑁‘𝐵)))) |
| 38 | 19, 23, 37 | 3eqtr4d 2787 | 1 ⊢ (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁‘𝐴) / (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 / cdiv 11920 Basecbs 17247 .rcmulr 17298 Ringcrg 20230 Unitcui 20355 invrcinvr 20387 /rcdvr 20400 NzRingcnzr 20512 normcnm 24589 NrmGrpcngp 24590 NrmRingcnrg 24592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ico 13393 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-topgen 17488 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-nzr 20513 df-abv 20810 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-xms 24330 df-ms 24331 df-nm 24595 df-ngp 24596 df-nrg 24598 |
| This theorem is referenced by: qqhnm 33991 |
| Copyright terms: Public domain | W3C validator |