MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Structured version   Visualization version   GIF version

Theorem nmdvr 24706
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x 𝑋 = (Base‘𝑅)
nmdvr.n 𝑁 = (norm‘𝑅)
nmdvr.u 𝑈 = (Unit‘𝑅)
nmdvr.d / = (/r𝑅)
Assertion
Ref Expression
nmdvr (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 767 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmRing)
2 simprl 771 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐴𝑋)
3 nrgring 24699 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ Ring)
5 simprr 773 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑈)
6 nmdvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 eqid 2734 . . . . . 6 (invr𝑅) = (invr𝑅)
8 nmdvr.x . . . . . 6 𝑋 = (Base‘𝑅)
96, 7, 8ringinvcl 20408 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐵𝑈) → ((invr𝑅)‘𝐵) ∈ 𝑋)
104, 5, 9syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((invr𝑅)‘𝐵) ∈ 𝑋)
11 nmdvr.n . . . . 5 𝑁 = (norm‘𝑅)
12 eqid 2734 . . . . 5 (.r𝑅) = (.r𝑅)
138, 11, 12nmmul 24700 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((invr𝑅)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
141, 2, 10, 13syl3anc 1370 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))))
15 simplr 769 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NzRing)
1611, 6, 7nminvr 24705 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
171, 15, 5, 16syl3anc 1370 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘((invr𝑅)‘𝐵)) = (1 / (𝑁𝐵)))
1817oveq2d 7446 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) · (𝑁‘((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
1914, 18eqtrd 2774 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
20 nmdvr.d . . . . 5 / = (/r𝑅)
218, 12, 6, 7, 20dvrval 20419 . . . 4 ((𝐴𝑋𝐵𝑈) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2221adantl 481 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝐴 / 𝐵) = (𝐴(.r𝑅)((invr𝑅)‘𝐵)))
2322fveq2d 6910 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = (𝑁‘(𝐴(.r𝑅)((invr𝑅)‘𝐵))))
24 nrgngp 24698 . . . . . 6 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2524ad2antrr 726 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝑅 ∈ NrmGrp)
268, 11nmcl 24644 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
2725, 2, 26syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℝ)
2827recnd 11286 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐴) ∈ ℂ)
298, 6unitss 20392 . . . . . 6 𝑈𝑋
3029, 5sselid 3992 . . . . 5 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → 𝐵𝑋)
318, 11nmcl 24644 . . . . 5 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
3225, 30, 31syl2anc 584 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℝ)
3332recnd 11286 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ∈ ℂ)
3411, 6unitnmn0 24704 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
35343expa 1117 . . . 4 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝐵𝑈) → (𝑁𝐵) ≠ 0)
3635adantrl 716 . . 3 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁𝐵) ≠ 0)
3728, 33, 36divrecd 12043 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → ((𝑁𝐴) / (𝑁𝐵)) = ((𝑁𝐴) · (1 / (𝑁𝐵))))
3819, 23, 373eqtr4d 2784 1 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ (𝐴𝑋𝐵𝑈)) → (𝑁‘(𝐴 / 𝐵)) = ((𝑁𝐴) / (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   · cmul 11157   / cdiv 11917  Basecbs 17244  .rcmulr 17298  Ringcrg 20250  Unitcui 20371  invrcinvr 20403  /rcdvr 20416  NzRingcnzr 20528  normcnm 24604  NrmGrpcngp 24605  NrmRingcnrg 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-nzr 20529  df-abv 20826  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nrg 24613
This theorem is referenced by:  qqhnm  33952
  Copyright terms: Public domain W3C validator