![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitnmn0 | Structured version Visualization version GIF version |
Description: The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nminvr.n | ⊢ 𝑁 = (norm‘𝑅) |
nminvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitnmn0 | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgngp 22791 | . . 3 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
2 | 1 | 3ad2ant1 1164 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝑅 ∈ NrmGrp) |
3 | eqid 2797 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | nminvr.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | unitcl 18972 | . . 3 ⊢ (𝐴 ∈ 𝑈 → 𝐴 ∈ (Base‘𝑅)) |
6 | 5 | 3ad2ant3 1166 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ (Base‘𝑅)) |
7 | eqid 2797 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | 4, 7 | nzrunit 19587 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ (0g‘𝑅)) |
9 | 8 | 3adant1 1161 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ (0g‘𝑅)) |
10 | nminvr.n | . . 3 ⊢ 𝑁 = (norm‘𝑅) | |
11 | 3, 10, 7 | nmne0 22748 | . 2 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅) ∧ 𝐴 ≠ (0g‘𝑅)) → (𝑁‘𝐴) ≠ 0) |
12 | 2, 6, 9, 11 | syl3anc 1491 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ‘cfv 6099 0cc0 10222 Basecbs 16181 0gc0g 16412 Unitcui 18952 NzRingcnzr 19577 normcnm 22706 NrmGrpcngp 22707 NrmRingcnrg 22709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-0g 16414 df-topgen 16416 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-mgp 18803 df-ur 18815 df-ring 18862 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-nzr 19578 df-psmet 20057 df-xmet 20058 df-bl 20060 df-mopn 20061 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-xms 22450 df-ms 22451 df-nm 22712 df-ngp 22713 df-nrg 22715 |
This theorem is referenced by: nminvr 22798 nmdvr 22799 |
Copyright terms: Public domain | W3C validator |