![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgdsdi | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmul.t | ⊢ · = (.r‘𝑅) |
nrgdsdi.d | ⊢ 𝐷 = (dist‘𝑅) |
Ref | Expression |
---|---|
nrgdsdi | ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmRing) | |
2 | simpr1 1187 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
3 | nrgring 22960 | . . . . . . 7 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Ring) |
5 | ringgrp 18997 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Grp) |
7 | simpr2 1188 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
8 | simpr3 1189 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
9 | nmmul.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
10 | eqid 2795 | . . . . . 6 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
11 | 9, 10 | grpsubcl 17941 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
12 | 6, 7, 8, 11 | syl3anc 1364 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
13 | nmmul.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
14 | nmmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
15 | 9, 13, 14 | nmmul 22961 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
16 | 1, 2, 12, 15 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
17 | 9, 14, 10, 4, 2, 7, 8 | ringsubdi 19044 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · (𝐵(-g‘𝑅)𝐶)) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶))) |
18 | 17 | fveq2d 6547 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
19 | 16, 18 | eqtr3d 2833 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
20 | nrgngp 22959 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmGrp) |
22 | nrgdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑅) | |
23 | 13, 9, 10, 22 | ngpds 22901 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
24 | 21, 7, 8, 23 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
25 | 24 | oveq2d 7037 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
26 | 9, 14 | ringcl 19006 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
27 | 4, 2, 7, 26 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐵) ∈ 𝑋) |
28 | 9, 14 | ringcl 19006 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
29 | 4, 2, 8, 28 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐶) ∈ 𝑋) |
30 | 13, 9, 10, 22 | ngpds 22901 | . . 3 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
31 | 21, 27, 29, 30 | syl3anc 1364 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
32 | 19, 25, 31 | 3eqtr4d 2841 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ‘cfv 6230 (class class class)co 7021 · cmul 10393 Basecbs 16317 .rcmulr 16400 distcds 16408 Grpcgrp 17866 -gcsg 17868 Ringcrg 18992 normcnm 22874 NrmGrpcngp 22875 NrmRingcnrg 22877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-pre-sup 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-map 8263 df-en 8363 df-dom 8364 df-sdom 8365 df-sup 8757 df-inf 8758 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-q 12203 df-rp 12245 df-xneg 12362 df-xadd 12363 df-xmul 12364 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-plusg 16412 df-0g 16549 df-topgen 16551 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-grp 17869 df-minusg 17870 df-sbg 17871 df-mgp 18935 df-ur 18947 df-ring 18994 df-abv 19283 df-psmet 20224 df-xmet 20225 df-met 20226 df-bl 20227 df-mopn 20228 df-top 21191 df-topon 21208 df-topsp 21230 df-bases 21243 df-xms 22618 df-ms 22619 df-nm 22880 df-ngp 22881 df-nrg 22883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |