MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgdsdi Structured version   Visualization version   GIF version

Theorem nrgdsdi 23563
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
nrgdsdi.d 𝐷 = (dist‘𝑅)
Assertion
Ref Expression
nrgdsdi ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)))

Proof of Theorem nrgdsdi
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmRing)
2 simpr1 1196 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
3 nrgring 23561 . . . . . . 7 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43adantr 484 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Ring)
5 ringgrp 19567 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Grp)
7 simpr2 1197 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
8 simpr3 1198 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
9 nmmul.x . . . . . 6 𝑋 = (Base‘𝑅)
10 eqid 2737 . . . . . 6 (-g𝑅) = (-g𝑅)
119, 10grpsubcl 18443 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵(-g𝑅)𝐶) ∈ 𝑋)
126, 7, 8, 11syl3anc 1373 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(-g𝑅)𝐶) ∈ 𝑋)
13 nmmul.n . . . . 5 𝑁 = (norm‘𝑅)
14 nmmul.t . . . . 5 · = (.r𝑅)
159, 13, 14nmmul 23562 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ (𝐵(-g𝑅)𝐶) ∈ 𝑋) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
161, 2, 12, 15syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
179, 14, 10, 4, 2, 7, 8ringsubdi 19617 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · (𝐵(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶)))
1817fveq2d 6721 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
1916, 18eqtr3d 2779 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
20 nrgngp 23560 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2120adantr 484 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmGrp)
22 nrgdsdi.d . . . . 5 𝐷 = (dist‘𝑅)
2313, 9, 10, 22ngpds 23502 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g𝑅)𝐶)))
2421, 7, 8, 23syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g𝑅)𝐶)))
2524oveq2d 7229 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
269, 14ringcl 19579 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
274, 2, 7, 26syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐵) ∈ 𝑋)
289, 14ringcl 19579 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
294, 2, 8, 28syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐶) ∈ 𝑋)
3013, 9, 10, 22ngpds 23502 . . 3 ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
3121, 27, 29, 30syl3anc 1373 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
3219, 25, 313eqtr4d 2787 1 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213   · cmul 10734  Basecbs 16760  .rcmulr 16803  distcds 16811  Grpcgrp 18365  -gcsg 18367  Ringcrg 19562  normcnm 23474  NrmGrpcngp 23475  NrmRingcnrg 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-topgen 16948  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mgp 19505  df-ur 19517  df-ring 19564  df-abv 19853  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-xms 23218  df-ms 23219  df-nm 23480  df-ngp 23481  df-nrg 23483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator