| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgdsdi | Structured version Visualization version GIF version | ||
| Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmul.t | ⊢ · = (.r‘𝑅) |
| nrgdsdi.d | ⊢ 𝐷 = (dist‘𝑅) |
| Ref | Expression |
|---|---|
| nrgdsdi | ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmRing) | |
| 2 | simpr1 1195 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24549 | . . . . . . 7 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Ring) |
| 5 | ringgrp 20123 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Grp) |
| 7 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 8 | simpr3 1197 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
| 9 | nmmul.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | 9, 10 | grpsubcl 18899 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
| 13 | nmmul.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 14 | nmmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 15 | 9, 13, 14 | nmmul 24550 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 16 | 1, 2, 12, 15 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 17 | 9, 14, 10, 4, 2, 7, 8 | ringsubdi 20192 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · (𝐵(-g‘𝑅)𝐶)) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶))) |
| 18 | 17 | fveq2d 6826 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 19 | 16, 18 | eqtr3d 2766 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 20 | nrgngp 24548 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmGrp) |
| 22 | nrgdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑅) | |
| 23 | 13, 9, 10, 22 | ngpds 24490 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
| 24 | 21, 7, 8, 23 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
| 25 | 24 | oveq2d 7365 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 26 | 9, 14 | ringcl 20135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
| 27 | 4, 2, 7, 26 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐵) ∈ 𝑋) |
| 28 | 9, 14 | ringcl 20135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
| 29 | 4, 2, 8, 28 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐶) ∈ 𝑋) |
| 30 | 13, 9, 10, 22 | ngpds 24490 | . . 3 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 31 | 21, 27, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 32 | 19, 25, 31 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 · cmul 11014 Basecbs 17120 .rcmulr 17162 distcds 17170 Grpcgrp 18812 -gcsg 18814 Ringcrg 20118 normcnm 24462 NrmGrpcngp 24463 NrmRingcnrg 24465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-topgen 17347 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-abv 20694 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 df-ms 24207 df-nm 24468 df-ngp 24469 df-nrg 24471 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |