MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgdsdi Structured version   Visualization version   GIF version

Theorem nrgdsdi 23201
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
nrgdsdi.d 𝐷 = (dist‘𝑅)
Assertion
Ref Expression
nrgdsdi ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)))

Proof of Theorem nrgdsdi
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmRing)
2 simpr1 1186 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
3 nrgring 23199 . . . . . . 7 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
43adantr 481 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Ring)
5 ringgrp 19231 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Grp)
7 simpr2 1187 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
8 simpr3 1188 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
9 nmmul.x . . . . . 6 𝑋 = (Base‘𝑅)
10 eqid 2818 . . . . . 6 (-g𝑅) = (-g𝑅)
119, 10grpsubcl 18117 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵(-g𝑅)𝐶) ∈ 𝑋)
126, 7, 8, 11syl3anc 1363 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(-g𝑅)𝐶) ∈ 𝑋)
13 nmmul.n . . . . 5 𝑁 = (norm‘𝑅)
14 nmmul.t . . . . 5 · = (.r𝑅)
159, 13, 14nmmul 23200 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ (𝐵(-g𝑅)𝐶) ∈ 𝑋) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
161, 2, 12, 15syl3anc 1363 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
179, 14, 10, 4, 2, 7, 8ringsubdi 19278 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · (𝐵(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶)))
1817fveq2d 6667 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘(𝐴 · (𝐵(-g𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
1916, 18eqtr3d 2855 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
20 nrgngp 23198 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2120adantr 481 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmGrp)
22 nrgdsdi.d . . . . 5 𝐷 = (dist‘𝑅)
2313, 9, 10, 22ngpds 23140 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g𝑅)𝐶)))
2421, 7, 8, 23syl3anc 1363 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g𝑅)𝐶)))
2524oveq2d 7161 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑅)𝐶))))
269, 14ringcl 19240 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
274, 2, 7, 26syl3anc 1363 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐵) ∈ 𝑋)
289, 14ringcl 19240 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
294, 2, 8, 28syl3anc 1363 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐶) ∈ 𝑋)
3013, 9, 10, 22ngpds 23140 . . 3 ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
3121, 27, 29, 30syl3anc 1363 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g𝑅)(𝐴 · 𝐶))))
3219, 25, 313eqtr4d 2863 1 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145   · cmul 10530  Basecbs 16471  .rcmulr 16554  distcds 16562  Grpcgrp 18041  -gcsg 18043  Ringcrg 19226  normcnm 23113  NrmGrpcngp 23114  NrmRingcnrg 23116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mgp 19169  df-ur 19181  df-ring 19228  df-abv 19517  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-xms 22857  df-ms 22858  df-nm 23119  df-ngp 23120  df-nrg 23122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator