| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgdsdi | Structured version Visualization version GIF version | ||
| Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| nmmul.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmul.t | ⊢ · = (.r‘𝑅) |
| nrgdsdi.d | ⊢ 𝐷 = (dist‘𝑅) |
| Ref | Expression |
|---|---|
| nrgdsdi | ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmRing) | |
| 2 | simpr1 1195 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 3 | nrgring 24584 | . . . . . . 7 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Ring) |
| 5 | ringgrp 20158 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ Grp) |
| 7 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 8 | simpr3 1197 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
| 9 | nmmul.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑅) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 11 | 9, 10 | grpsubcl 18934 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) |
| 13 | nmmul.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 14 | nmmul.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 15 | 9, 13, 14 | nmmul 24585 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ (𝐵(-g‘𝑅)𝐶) ∈ 𝑋) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 16 | 1, 2, 12, 15 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 17 | 9, 14, 10, 4, 2, 7, 8 | ringsubdi 20227 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · (𝐵(-g‘𝑅)𝐶)) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶))) |
| 18 | 17 | fveq2d 6844 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑁‘(𝐴 · (𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 19 | 16, 18 | eqtr3d 2766 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶))) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 20 | nrgngp 24583 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑅 ∈ NrmGrp) |
| 22 | nrgdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑅) | |
| 23 | 13, 9, 10, 22 | ngpds 24525 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
| 24 | 21, 7, 8, 23 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) = (𝑁‘(𝐵(-g‘𝑅)𝐶))) |
| 25 | 24 | oveq2d 7385 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑅)𝐶)))) |
| 26 | 9, 14 | ringcl 20170 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
| 27 | 4, 2, 7, 26 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐵) ∈ 𝑋) |
| 28 | 9, 14 | ringcl 20170 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ 𝑋) |
| 29 | 4, 2, 8, 28 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 · 𝐶) ∈ 𝑋) |
| 30 | 13, 9, 10, 22 | ngpds 24525 | . . 3 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 31 | 21, 27, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶)) = (𝑁‘((𝐴 · 𝐵)(-g‘𝑅)(𝐴 · 𝐶)))) |
| 32 | 19, 25, 31 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝑁‘𝐴) · (𝐵𝐷𝐶)) = ((𝐴 · 𝐵)𝐷(𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 · cmul 11049 Basecbs 17155 .rcmulr 17197 distcds 17205 Grpcgrp 18847 -gcsg 18849 Ringcrg 20153 normcnm 24497 NrmGrpcngp 24498 NrmRingcnrg 24500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-topgen 17382 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-sbg 18852 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-abv 20729 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-xms 24241 df-ms 24242 df-nm 24503 df-ngp 24504 df-nrg 24506 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |