![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nminvr | Structured version Visualization version GIF version |
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nminvr.n | β’ π = (normβπ ) |
nminvr.u | β’ π = (Unitβπ ) |
nminvr.i | β’ πΌ = (invrβπ ) |
Ref | Expression |
---|---|
nminvr | β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(πΌβπ΄)) = (1 / (πβπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgngp 24530 | . . . . 5 β’ (π β NrmRing β π β NrmGrp) | |
2 | 1 | 3ad2ant1 1130 | . . . 4 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β π β NrmGrp) |
3 | eqid 2726 | . . . . . 6 β’ (Baseβπ ) = (Baseβπ ) | |
4 | nminvr.u | . . . . . 6 β’ π = (Unitβπ ) | |
5 | 3, 4 | unitcl 20275 | . . . . 5 β’ (π΄ β π β π΄ β (Baseβπ )) |
6 | 5 | 3ad2ant3 1132 | . . . 4 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β π΄ β (Baseβπ )) |
7 | nminvr.n | . . . . 5 β’ π = (normβπ ) | |
8 | 3, 7 | nmcl 24476 | . . . 4 β’ ((π β NrmGrp β§ π΄ β (Baseβπ )) β (πβπ΄) β β) |
9 | 2, 6, 8 | syl2anc 583 | . . 3 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβπ΄) β β) |
10 | 9 | recnd 11243 | . 2 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβπ΄) β β) |
11 | nzrring 20416 | . . . . . 6 β’ (π β NzRing β π β Ring) | |
12 | 11 | 3ad2ant2 1131 | . . . . 5 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β π β Ring) |
13 | simp3 1135 | . . . . 5 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β π΄ β π) | |
14 | nminvr.i | . . . . . 6 β’ πΌ = (invrβπ ) | |
15 | 4, 14, 3 | ringinvcl 20292 | . . . . 5 β’ ((π β Ring β§ π΄ β π) β (πΌβπ΄) β (Baseβπ )) |
16 | 12, 13, 15 | syl2anc 583 | . . . 4 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πΌβπ΄) β (Baseβπ )) |
17 | 3, 7 | nmcl 24476 | . . . 4 β’ ((π β NrmGrp β§ (πΌβπ΄) β (Baseβπ )) β (πβ(πΌβπ΄)) β β) |
18 | 2, 16, 17 | syl2anc 583 | . . 3 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(πΌβπ΄)) β β) |
19 | 18 | recnd 11243 | . 2 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(πΌβπ΄)) β β) |
20 | 7, 4 | unitnmn0 24536 | . 2 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβπ΄) β 0) |
21 | eqid 2726 | . . . . . 6 β’ (.rβπ ) = (.rβπ ) | |
22 | eqid 2726 | . . . . . 6 β’ (1rβπ ) = (1rβπ ) | |
23 | 4, 14, 21, 22 | unitrinv 20294 | . . . . 5 β’ ((π β Ring β§ π΄ β π) β (π΄(.rβπ )(πΌβπ΄)) = (1rβπ )) |
24 | 12, 13, 23 | syl2anc 583 | . . . 4 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (π΄(.rβπ )(πΌβπ΄)) = (1rβπ )) |
25 | 24 | fveq2d 6888 | . . 3 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(π΄(.rβπ )(πΌβπ΄))) = (πβ(1rβπ ))) |
26 | simp1 1133 | . . . 4 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β π β NrmRing) | |
27 | 3, 7, 21 | nmmul 24532 | . . . 4 β’ ((π β NrmRing β§ π΄ β (Baseβπ ) β§ (πΌβπ΄) β (Baseβπ )) β (πβ(π΄(.rβπ )(πΌβπ΄))) = ((πβπ΄) Β· (πβ(πΌβπ΄)))) |
28 | 26, 6, 16, 27 | syl3anc 1368 | . . 3 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(π΄(.rβπ )(πΌβπ΄))) = ((πβπ΄) Β· (πβ(πΌβπ΄)))) |
29 | 7, 22 | nm1 24535 | . . . 4 β’ ((π β NrmRing β§ π β NzRing) β (πβ(1rβπ )) = 1) |
30 | 29 | 3adant3 1129 | . . 3 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(1rβπ )) = 1) |
31 | 25, 28, 30 | 3eqtr3d 2774 | . 2 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β ((πβπ΄) Β· (πβ(πΌβπ΄))) = 1) |
32 | 10, 19, 20, 31 | mvllmuld 12047 | 1 β’ ((π β NrmRing β§ π β NzRing β§ π΄ β π) β (πβ(πΌβπ΄)) = (1 / (πβπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 βcr 11108 1c1 11110 Β· cmul 11114 / cdiv 11872 Basecbs 17151 .rcmulr 17205 1rcur 20084 Ringcrg 20136 Unitcui 20255 invrcinvr 20287 NzRingcnzr 20412 normcnm 24436 NrmGrpcngp 24437 NrmRingcnrg 24439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ico 13333 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-topgen 17396 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-nzr 20413 df-abv 20658 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-xms 24177 df-ms 24178 df-nm 24442 df-ngp 24443 df-nrg 24445 |
This theorem is referenced by: nmdvr 24538 |
Copyright terms: Public domain | W3C validator |