MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminvr Structured version   Visualization version   GIF version

Theorem nminvr 23739
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nminvr.n 𝑁 = (norm‘𝑅)
nminvr.u 𝑈 = (Unit‘𝑅)
nminvr.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
nminvr ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))

Proof of Theorem nminvr
StepHypRef Expression
1 nrgngp 23732 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
213ad2ant1 1131 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmGrp)
3 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 nminvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
53, 4unitcl 19816 . . . . 5 (𝐴𝑈𝐴 ∈ (Base‘𝑅))
653ad2ant3 1133 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ∈ (Base‘𝑅))
7 nminvr.n . . . . 5 𝑁 = (norm‘𝑅)
83, 7nmcl 23678 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅)) → (𝑁𝐴) ∈ ℝ)
92, 6, 8syl2anc 583 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℝ)
109recnd 10934 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℂ)
11 nzrring 20445 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
12113ad2ant2 1132 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
13 simp3 1136 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴𝑈)
14 nminvr.i . . . . . 6 𝐼 = (invr𝑅)
154, 14, 3ringinvcl 19833 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
1612, 13, 15syl2anc 583 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
173, 7nmcl 23678 . . . 4 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
182, 16, 17syl2anc 583 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
1918recnd 10934 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℂ)
207, 4unitnmn0 23738 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ≠ 0)
21 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
22 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
234, 14, 21, 22unitrinv 19835 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2412, 13, 23syl2anc 583 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2524fveq2d 6760 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = (𝑁‘(1r𝑅)))
26 simp1 1134 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmRing)
273, 7, 21nmmul 23734 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ (Base‘𝑅) ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
2826, 6, 16, 27syl3anc 1369 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
297, 22nm1 23737 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘(1r𝑅)) = 1)
30293adant3 1130 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(1r𝑅)) = 1)
3125, 28, 303eqtr3d 2786 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → ((𝑁𝐴) · (𝑁‘(𝐼𝐴))) = 1)
3210, 19, 20, 31mvllmuld 11737 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807   / cdiv 11562  Basecbs 16840  .rcmulr 16889  1rcur 19652  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  NzRingcnzr 20441  normcnm 23638  NrmGrpcngp 23639  NrmRingcnrg 23641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-abv 19992  df-nzr 20442  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nrg 23647
This theorem is referenced by:  nmdvr  23740
  Copyright terms: Public domain W3C validator