MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminvr Structured version   Visualization version   GIF version

Theorem nminvr 23278
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nminvr.n 𝑁 = (norm‘𝑅)
nminvr.u 𝑈 = (Unit‘𝑅)
nminvr.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
nminvr ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))

Proof of Theorem nminvr
StepHypRef Expression
1 nrgngp 23271 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
213ad2ant1 1130 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmGrp)
3 eqid 2801 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 nminvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
53, 4unitcl 19408 . . . . 5 (𝐴𝑈𝐴 ∈ (Base‘𝑅))
653ad2ant3 1132 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ∈ (Base‘𝑅))
7 nminvr.n . . . . 5 𝑁 = (norm‘𝑅)
83, 7nmcl 23225 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅)) → (𝑁𝐴) ∈ ℝ)
92, 6, 8syl2anc 587 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℝ)
109recnd 10662 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℂ)
11 nzrring 20030 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
12113ad2ant2 1131 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
13 simp3 1135 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴𝑈)
14 nminvr.i . . . . . 6 𝐼 = (invr𝑅)
154, 14, 3ringinvcl 19425 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
1612, 13, 15syl2anc 587 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
173, 7nmcl 23225 . . . 4 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
182, 16, 17syl2anc 587 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
1918recnd 10662 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℂ)
207, 4unitnmn0 23277 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ≠ 0)
21 eqid 2801 . . . . . 6 (.r𝑅) = (.r𝑅)
22 eqid 2801 . . . . . 6 (1r𝑅) = (1r𝑅)
234, 14, 21, 22unitrinv 19427 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2412, 13, 23syl2anc 587 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2524fveq2d 6653 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = (𝑁‘(1r𝑅)))
26 simp1 1133 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmRing)
273, 7, 21nmmul 23273 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ (Base‘𝑅) ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
2826, 6, 16, 27syl3anc 1368 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
297, 22nm1 23276 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘(1r𝑅)) = 1)
30293adant3 1129 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(1r𝑅)) = 1)
3125, 28, 303eqtr3d 2844 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → ((𝑁𝐴) · (𝑁‘(𝐼𝐴))) = 1)
3210, 19, 20, 31mvllmuld 11465 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  cr 10529  1c1 10531   · cmul 10535   / cdiv 11290  Basecbs 16478  .rcmulr 16561  1rcur 19247  Ringcrg 19293  Unitcui 19388  invrcinvr 19420  NzRingcnzr 20026  normcnm 23186  NrmGrpcngp 23187  NrmRingcnrg 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-abv 19584  df-nzr 20027  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nrg 23195
This theorem is referenced by:  nmdvr  23279
  Copyright terms: Public domain W3C validator