![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nminvr | Structured version Visualization version GIF version |
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
nminvr.n | ⊢ 𝑁 = (norm‘𝑅) |
nminvr.u | ⊢ 𝑈 = (Unit‘𝑅) |
nminvr.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
nminvr | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐼‘𝐴)) = (1 / (𝑁‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgngp 24161 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
2 | 1 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝑅 ∈ NrmGrp) |
3 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | nminvr.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | unitcl 20178 | . . . . 5 ⊢ (𝐴 ∈ 𝑈 → 𝐴 ∈ (Base‘𝑅)) |
6 | 5 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ (Base‘𝑅)) |
7 | nminvr.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
8 | 3, 7 | nmcl 24107 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅)) → (𝑁‘𝐴) ∈ ℝ) |
9 | 2, 6, 8 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ∈ ℝ) |
10 | 9 | recnd 11238 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ∈ ℂ) |
11 | nzrring 20284 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
12 | 11 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝑅 ∈ Ring) |
13 | simp3 1139 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝑈) | |
14 | nminvr.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
15 | 4, 14, 3 | ringinvcl 20195 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐼‘𝐴) ∈ (Base‘𝑅)) |
16 | 12, 13, 15 | syl2anc 585 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝐼‘𝐴) ∈ (Base‘𝑅)) |
17 | 3, 7 | nmcl 24107 | . . . 4 ⊢ ((𝑅 ∈ NrmGrp ∧ (𝐼‘𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐼‘𝐴)) ∈ ℝ) |
18 | 2, 16, 17 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐼‘𝐴)) ∈ ℝ) |
19 | 18 | recnd 11238 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐼‘𝐴)) ∈ ℂ) |
20 | 7, 4 | unitnmn0 24167 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘𝐴) ≠ 0) |
21 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
22 | eqid 2733 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 4, 14, 21, 22 | unitrinv 20197 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑅)(𝐼‘𝐴)) = (1r‘𝑅)) |
24 | 12, 13, 23 | syl2anc 585 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑅)(𝐼‘𝐴)) = (1r‘𝑅)) |
25 | 24 | fveq2d 6892 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐴(.r‘𝑅)(𝐼‘𝐴))) = (𝑁‘(1r‘𝑅))) |
26 | simp1 1137 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝑅 ∈ NrmRing) | |
27 | 3, 7, 21 | nmmul 24163 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ (Base‘𝑅) ∧ (𝐼‘𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐴(.r‘𝑅)(𝐼‘𝐴))) = ((𝑁‘𝐴) · (𝑁‘(𝐼‘𝐴)))) |
28 | 26, 6, 16, 27 | syl3anc 1372 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐴(.r‘𝑅)(𝐼‘𝐴))) = ((𝑁‘𝐴) · (𝑁‘(𝐼‘𝐴)))) |
29 | 7, 22 | nm1 24166 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘(1r‘𝑅)) = 1) |
30 | 29 | 3adant3 1133 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(1r‘𝑅)) = 1) |
31 | 25, 28, 30 | 3eqtr3d 2781 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → ((𝑁‘𝐴) · (𝑁‘(𝐼‘𝐴))) = 1) |
32 | 10, 19, 20, 31 | mvllmuld 12042 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → (𝑁‘(𝐼‘𝐴)) = (1 / (𝑁‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 ℝcr 11105 1c1 11107 · cmul 11111 / cdiv 11867 Basecbs 17140 .rcmulr 17194 1rcur 19996 Ringcrg 20047 Unitcui 20158 invrcinvr 20190 NzRingcnzr 20280 normcnm 24067 NrmGrpcngp 24068 NrmRingcnrg 24070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-0g 17383 df-topgen 17385 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-mgp 19980 df-ur 19997 df-ring 20049 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-nzr 20281 df-abv 20413 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-xms 23808 df-ms 23809 df-nm 24073 df-ngp 24074 df-nrg 24076 |
This theorem is referenced by: nmdvr 24169 |
Copyright terms: Public domain | W3C validator |