MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminvr Structured version   Visualization version   GIF version

Theorem nminvr 24564
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nminvr.n 𝑁 = (norm‘𝑅)
nminvr.u 𝑈 = (Unit‘𝑅)
nminvr.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
nminvr ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))

Proof of Theorem nminvr
StepHypRef Expression
1 nrgngp 24557 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
213ad2ant1 1133 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmGrp)
3 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 nminvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
53, 4unitcl 20291 . . . . 5 (𝐴𝑈𝐴 ∈ (Base‘𝑅))
653ad2ant3 1135 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ∈ (Base‘𝑅))
7 nminvr.n . . . . 5 𝑁 = (norm‘𝑅)
83, 7nmcl 24511 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅)) → (𝑁𝐴) ∈ ℝ)
92, 6, 8syl2anc 584 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℝ)
109recnd 11209 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℂ)
11 nzrring 20432 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
12113ad2ant2 1134 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
13 simp3 1138 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴𝑈)
14 nminvr.i . . . . . 6 𝐼 = (invr𝑅)
154, 14, 3ringinvcl 20308 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
1612, 13, 15syl2anc 584 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
173, 7nmcl 24511 . . . 4 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
182, 16, 17syl2anc 584 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
1918recnd 11209 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℂ)
207, 4unitnmn0 24563 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ≠ 0)
21 eqid 2730 . . . . . 6 (.r𝑅) = (.r𝑅)
22 eqid 2730 . . . . . 6 (1r𝑅) = (1r𝑅)
234, 14, 21, 22unitrinv 20310 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2412, 13, 23syl2anc 584 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2524fveq2d 6865 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = (𝑁‘(1r𝑅)))
26 simp1 1136 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmRing)
273, 7, 21nmmul 24559 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ (Base‘𝑅) ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
2826, 6, 16, 27syl3anc 1373 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
297, 22nm1 24562 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘(1r𝑅)) = 1)
30293adant3 1132 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(1r𝑅)) = 1)
3125, 28, 303eqtr3d 2773 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → ((𝑁𝐴) · (𝑁‘(𝐼𝐴))) = 1)
3210, 19, 20, 31mvllmuld 12021 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   · cmul 11080   / cdiv 11842  Basecbs 17186  .rcmulr 17228  1rcur 20097  Ringcrg 20149  Unitcui 20271  invrcinvr 20303  NzRingcnzr 20428  normcnm 24471  NrmGrpcngp 24472  NrmRingcnrg 24474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-abv 20725  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nrg 24480
This theorem is referenced by:  nmdvr  24565
  Copyright terms: Public domain W3C validator