MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminvr Structured version   Visualization version   GIF version

Theorem nminvr 24168
Description: The norm of an inverse in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nminvr.n 𝑁 = (norm‘𝑅)
nminvr.u 𝑈 = (Unit‘𝑅)
nminvr.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
nminvr ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))

Proof of Theorem nminvr
StepHypRef Expression
1 nrgngp 24161 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
213ad2ant1 1134 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmGrp)
3 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 nminvr.u . . . . . 6 𝑈 = (Unit‘𝑅)
53, 4unitcl 20178 . . . . 5 (𝐴𝑈𝐴 ∈ (Base‘𝑅))
653ad2ant3 1136 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ∈ (Base‘𝑅))
7 nminvr.n . . . . 5 𝑁 = (norm‘𝑅)
83, 7nmcl 24107 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ (Base‘𝑅)) → (𝑁𝐴) ∈ ℝ)
92, 6, 8syl2anc 585 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℝ)
109recnd 11238 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ∈ ℂ)
11 nzrring 20284 . . . . . 6 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
12113ad2ant2 1135 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
13 simp3 1139 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴𝑈)
14 nminvr.i . . . . . 6 𝐼 = (invr𝑅)
154, 14, 3ringinvcl 20195 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
1612, 13, 15syl2anc 585 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐼𝐴) ∈ (Base‘𝑅))
173, 7nmcl 24107 . . . 4 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
182, 16, 17syl2anc 585 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℝ)
1918recnd 11238 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) ∈ ℂ)
207, 4unitnmn0 24167 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁𝐴) ≠ 0)
21 eqid 2733 . . . . . 6 (.r𝑅) = (.r𝑅)
22 eqid 2733 . . . . . 6 (1r𝑅) = (1r𝑅)
234, 14, 21, 22unitrinv 20197 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2412, 13, 23syl2anc 585 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
2524fveq2d 6892 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = (𝑁‘(1r𝑅)))
26 simp1 1137 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝑅 ∈ NrmRing)
273, 7, 21nmmul 24163 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ (Base‘𝑅) ∧ (𝐼𝐴) ∈ (Base‘𝑅)) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
2826, 6, 16, 27syl3anc 1372 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐴(.r𝑅)(𝐼𝐴))) = ((𝑁𝐴) · (𝑁‘(𝐼𝐴))))
297, 22nm1 24166 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing) → (𝑁‘(1r𝑅)) = 1)
30293adant3 1133 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(1r𝑅)) = 1)
3125, 28, 303eqtr3d 2781 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → ((𝑁𝐴) · (𝑁‘(𝐼𝐴))) = 1)
3210, 19, 20, 31mvllmuld 12042 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴𝑈) → (𝑁‘(𝐼𝐴)) = (1 / (𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  cr 11105  1c1 11107   · cmul 11111   / cdiv 11867  Basecbs 17140  .rcmulr 17194  1rcur 19996  Ringcrg 20047  Unitcui 20158  invrcinvr 20190  NzRingcnzr 20280  normcnm 24067  NrmGrpcngp 24068  NrmRingcnrg 24070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-topgen 17385  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-nzr 20281  df-abv 20413  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-xms 23808  df-ms 23809  df-nm 24073  df-ngp 24074  df-nrg 24076
This theorem is referenced by:  nmdvr  24169
  Copyright terms: Public domain W3C validator