Proof of Theorem nrginvrcnlem
Step | Hyp | Ref
| Expression |
1 | | nrginvrcn.t |
. . 3
⊢ 𝑇 = (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) |
2 | | 1rp 12734 |
. . . . 5
⊢ 1 ∈
ℝ+ |
3 | | nrginvrcn.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ NrmRing) |
4 | | nrgngp 23826 |
. . . . . . . 8
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ NrmGrp) |
6 | | nrginvrcn.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
7 | | nrginvrcn.u |
. . . . . . . . 9
⊢ 𝑈 = (Unit‘𝑅) |
8 | 6, 7 | unitss 19902 |
. . . . . . . 8
⊢ 𝑈 ⊆ 𝑋 |
9 | | nrginvrcn.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
10 | 8, 9 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
11 | | nrginvrcn.z |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ NzRing) |
12 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
13 | 7, 12 | nzrunit 20538 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ (0g‘𝑅)) |
14 | 11, 9, 13 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ (0g‘𝑅)) |
15 | | nrginvrcn.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑅) |
16 | 6, 15, 12 | nmrpcl 23776 |
. . . . . . 7
⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ (0g‘𝑅)) → (𝑁‘𝐴) ∈
ℝ+) |
17 | 5, 10, 14, 16 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝐴) ∈
ℝ+) |
18 | | nrginvrcn.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
19 | 17, 18 | rpmulcld 12788 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐴) · 𝐵) ∈
ℝ+) |
20 | | ifcl 4504 |
. . . . 5
⊢ ((1
∈ ℝ+ ∧ ((𝑁‘𝐴) · 𝐵) ∈ ℝ+) → if(1
≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ∈
ℝ+) |
21 | 2, 19, 20 | sylancr 587 |
. . . 4
⊢ (𝜑 → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ∈
ℝ+) |
22 | 17 | rphalfcld 12784 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐴) / 2) ∈
ℝ+) |
23 | 21, 22 | rpmulcld 12788 |
. . 3
⊢ (𝜑 → (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ∈
ℝ+) |
24 | 1, 23 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
25 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmGrp) |
26 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴 ∈ 𝑈) |
27 | 6, 7 | unitcl 19901 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑈 → 𝐴 ∈ 𝑋) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴 ∈ 𝑋) |
29 | 6, 15 | nmcl 23772 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
30 | 25, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝐴) ∈ ℝ) |
31 | 30 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝐴) ∈ ℂ) |
32 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦 ∈ 𝑈) |
33 | 8, 32 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦 ∈ 𝑋) |
34 | 6, 15 | nmcl 23772 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ NrmGrp ∧ 𝑦 ∈ 𝑋) → (𝑁‘𝑦) ∈ ℝ) |
35 | 25, 33, 34 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝑦) ∈ ℝ) |
36 | 35 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝑦) ∈ ℂ) |
37 | | ngpgrp 23755 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp) |
38 | 25, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Grp) |
39 | | nrgring 23827 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
40 | 3, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Ring) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Ring) |
42 | | nrginvrcn.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (invr‘𝑅) |
43 | 7, 42, 6 | ringinvcl 19918 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐼‘𝐴) ∈ 𝑋) |
44 | 41, 26, 43 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼‘𝐴) ∈ 𝑋) |
45 | 7, 42, 6 | ringinvcl 19918 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑈) → (𝐼‘𝑦) ∈ 𝑋) |
46 | 41, 32, 45 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼‘𝑦) ∈ 𝑋) |
47 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(-g‘𝑅) = (-g‘𝑅) |
48 | 6, 47 | grpsubcl 18655 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Grp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ (𝐼‘𝑦) ∈ 𝑋) → ((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) |
49 | 38, 44, 46, 48 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) |
50 | 6, 15 | nmcl 23772 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ NrmGrp ∧ ((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) → (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) ∈ ℝ) |
51 | 25, 49, 50 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) ∈ ℝ) |
52 | 51 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) ∈ ℂ) |
53 | 31, 36, 52 | mul32d 11185 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · (𝑁‘𝑦)) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = (((𝑁‘𝐴) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦))) |
54 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmRing) |
55 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
56 | 6, 15, 55 | nmmul 23828 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ ((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) → (𝑁‘(𝐴(.r‘𝑅)((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = ((𝑁‘𝐴) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))))) |
57 | 54, 28, 49, 56 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r‘𝑅)((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = ((𝑁‘𝐴) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))))) |
58 | 6, 55, 47, 41, 28, 44, 46 | ringsubdi 19838 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) = ((𝐴(.r‘𝑅)(𝐼‘𝐴))(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) |
59 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (1r‘𝑅) |
60 | 7, 42, 55, 59 | unitrinv 19920 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑅)(𝐼‘𝐴)) = (1r‘𝑅)) |
61 | 41, 26, 60 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)(𝐼‘𝐴)) = (1r‘𝑅)) |
62 | 61 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r‘𝑅)(𝐼‘𝐴))(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))) = ((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) |
63 | 58, 62 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) = ((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) |
64 | 63 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r‘𝑅)((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = (𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))))) |
65 | 57, 64 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = (𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))))) |
66 | 65 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦)) = ((𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦))) |
67 | 6, 59 | ringidcl 19807 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝑋) |
68 | 41, 67 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1r‘𝑅) ∈ 𝑋) |
69 | 6, 55 | ringcl 19800 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ (𝐼‘𝑦) ∈ 𝑋) → (𝐴(.r‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) |
70 | 41, 28, 46, 69 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) |
71 | 6, 47 | grpsubcl 18655 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ 𝑋 ∧ (𝐴(.r‘𝑅)(𝐼‘𝑦)) ∈ 𝑋) → ((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))) ∈ 𝑋) |
72 | 38, 68, 70, 71 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))) ∈ 𝑋) |
73 | 6, 15, 55 | nmmul 23828 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ NrmRing ∧
((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦))) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))(.r‘𝑅)𝑦)) = ((𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦))) |
74 | 54, 72, 33, 73 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))(.r‘𝑅)𝑦)) = ((𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦))) |
75 | 6, 55, 47, 41, 68, 70, 33 | rngsubdir 19839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))(.r‘𝑅)𝑦) = (((1r‘𝑅)(.r‘𝑅)𝑦)(-g‘𝑅)((𝐴(.r‘𝑅)(𝐼‘𝑦))(.r‘𝑅)𝑦))) |
76 | 6, 55, 59 | ringlidm 19810 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
77 | 41, 33, 76 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
78 | 6, 55 | ringass 19803 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝑋 ∧ (𝐼‘𝑦) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐴(.r‘𝑅)(𝐼‘𝑦))(.r‘𝑅)𝑦) = (𝐴(.r‘𝑅)((𝐼‘𝑦)(.r‘𝑅)𝑦))) |
79 | 41, 28, 46, 33, 78 | syl13anc 1371 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r‘𝑅)(𝐼‘𝑦))(.r‘𝑅)𝑦) = (𝐴(.r‘𝑅)((𝐼‘𝑦)(.r‘𝑅)𝑦))) |
80 | 7, 42, 55, 59 | unitlinv 19919 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑈) → ((𝐼‘𝑦)(.r‘𝑅)𝑦) = (1r‘𝑅)) |
81 | 41, 32, 80 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼‘𝑦)(.r‘𝑅)𝑦) = (1r‘𝑅)) |
82 | 81 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)((𝐼‘𝑦)(.r‘𝑅)𝑦)) = (𝐴(.r‘𝑅)(1r‘𝑅))) |
83 | 6, 55, 59 | ringridm 19811 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋) → (𝐴(.r‘𝑅)(1r‘𝑅)) = 𝐴) |
84 | 41, 28, 83 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r‘𝑅)(1r‘𝑅)) = 𝐴) |
85 | 79, 82, 84 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r‘𝑅)(𝐼‘𝑦))(.r‘𝑅)𝑦) = 𝐴) |
86 | 77, 85 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r‘𝑅)(.r‘𝑅)𝑦)(-g‘𝑅)((𝐴(.r‘𝑅)(𝐼‘𝑦))(.r‘𝑅)𝑦)) = (𝑦(-g‘𝑅)𝐴)) |
87 | 75, 86 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))(.r‘𝑅)𝑦) = (𝑦(-g‘𝑅)𝐴)) |
88 | 87 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))(.r‘𝑅)𝑦)) = (𝑁‘(𝑦(-g‘𝑅)𝐴))) |
89 | 74, 88 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘((1r‘𝑅)(-g‘𝑅)(𝐴(.r‘𝑅)(𝐼‘𝑦)))) · (𝑁‘𝑦)) = (𝑁‘(𝑦(-g‘𝑅)𝐴))) |
90 | 53, 66, 89 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · (𝑁‘𝑦)) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = (𝑁‘(𝑦(-g‘𝑅)𝐴))) |
91 | 6, 47 | grpsubcl 18655 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑦(-g‘𝑅)𝐴) ∈ 𝑋) |
92 | 38, 33, 28, 91 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑦(-g‘𝑅)𝐴) ∈ 𝑋) |
93 | 6, 15 | nmcl 23772 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ NrmGrp ∧ (𝑦(-g‘𝑅)𝐴) ∈ 𝑋) → (𝑁‘(𝑦(-g‘𝑅)𝐴)) ∈ ℝ) |
94 | 25, 92, 93 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g‘𝑅)𝐴)) ∈ ℝ) |
95 | 94 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g‘𝑅)𝐴)) ∈ ℂ) |
96 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝐴) ∈
ℝ+) |
97 | 11 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NzRing) |
98 | 7, 12 | nzrunit 20538 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ NzRing ∧ 𝑦 ∈ 𝑈) → 𝑦 ≠ (0g‘𝑅)) |
99 | 97, 32, 98 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦 ≠ (0g‘𝑅)) |
100 | 6, 15, 12 | nmrpcl 23776 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ NrmGrp ∧ 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝑁‘𝑦) ∈
ℝ+) |
101 | 25, 33, 99, 100 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝑦) ∈
ℝ+) |
102 | 96, 101 | rpmulcld 12788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · (𝑁‘𝑦)) ∈
ℝ+) |
103 | 102 | rpred 12772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · (𝑁‘𝑦)) ∈ ℝ) |
104 | 103 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · (𝑁‘𝑦)) ∈ ℂ) |
105 | 102 | rpne0d 12777 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · (𝑁‘𝑦)) ≠ 0) |
106 | 95, 104, 52, 105 | divmuld 11773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘(𝑦(-g‘𝑅)𝐴)) / ((𝑁‘𝐴) · (𝑁‘𝑦))) = (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦))) ↔ (((𝑁‘𝐴) · (𝑁‘𝑦)) · (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) = (𝑁‘(𝑦(-g‘𝑅)𝐴)))) |
107 | 90, 106 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘(𝑦(-g‘𝑅)𝐴)) / ((𝑁‘𝐴) · (𝑁‘𝑦))) = (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) |
108 | | nrginvrcn.d |
. . . . . . . . 9
⊢ 𝐷 = (dist‘𝑅) |
109 | 15, 6, 47, 108 | ngpdsr 23761 |
. . . . . . . 8
⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g‘𝑅)𝐴))) |
110 | 25, 28, 33, 109 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g‘𝑅)𝐴))) |
111 | 110 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁‘𝐴) · (𝑁‘𝑦))) = ((𝑁‘(𝑦(-g‘𝑅)𝐴)) / ((𝑁‘𝐴) · (𝑁‘𝑦)))) |
112 | 15, 6, 47, 108 | ngpds 23760 |
. . . . . . 7
⊢ ((𝑅 ∈ NrmGrp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ (𝐼‘𝑦) ∈ 𝑋) → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) = (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) |
113 | 25, 44, 46, 112 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) = (𝑁‘((𝐼‘𝐴)(-g‘𝑅)(𝐼‘𝑦)))) |
114 | 107, 111,
113 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) = ((𝐴𝐷𝑦) / ((𝑁‘𝐴) · (𝑁‘𝑦)))) |
115 | 110, 94 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) ∈ ℝ) |
116 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈
ℝ+) |
117 | 116 | rpred 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈ ℝ) |
118 | 18 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈
ℝ+) |
119 | 118 | rpred 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℝ) |
120 | 103, 119 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵) ∈ ℝ) |
121 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < 𝑇) |
122 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · 𝐵) ∈
ℝ+) |
123 | 96 | rphalfcld 12784 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) / 2) ∈
ℝ+) |
124 | 122, 123 | rpmulcld 12788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2)) ∈
ℝ+) |
125 | 124 | rpred 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2)) ∈ ℝ) |
126 | | 1re 10975 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
127 | 122 | rpred 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) · 𝐵) ∈ ℝ) |
128 | | min2 12924 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ ((𝑁‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ ((𝑁‘𝐴) · 𝐵)) |
129 | 126, 127,
128 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ ((𝑁‘𝐴) · 𝐵)) |
130 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ∈
ℝ+) |
131 | 130 | rpred 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ∈ ℝ) |
132 | 131, 127,
123 | lemul1d 12815 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ ((𝑁‘𝐴) · 𝐵) ↔ (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ≤ (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2)))) |
133 | 129, 132 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ≤ (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2))) |
134 | 1, 133 | eqbrtrid 5109 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2))) |
135 | 123 | rpred 12772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) / 2) ∈ ℝ) |
136 | 31 | 2halvesd 12219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) / 2) + ((𝑁‘𝐴) / 2)) = (𝑁‘𝐴)) |
137 | 30, 35 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) − (𝑁‘𝑦)) ∈ ℝ) |
138 | 6, 15, 47 | nm2dif 23781 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝑦)) ≤ (𝑁‘(𝐴(-g‘𝑅)𝑦))) |
139 | 25, 28, 33, 138 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) − (𝑁‘𝑦)) ≤ (𝑁‘(𝐴(-g‘𝑅)𝑦))) |
140 | 15, 6, 47, 108 | ngpds 23760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g‘𝑅)𝑦))) |
141 | 25, 28, 33, 140 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g‘𝑅)𝑦))) |
142 | 139, 141 | breqtrrd 5102 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) − (𝑁‘𝑦)) ≤ (𝐴𝐷𝑦)) |
143 | | min1 12923 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℝ ∧ ((𝑁‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ 1) |
144 | 126, 127,
143 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ 1) |
145 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 1 ∈ ℝ) |
146 | 131, 145,
123 | lemul1d 12815 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ≤ (1 · ((𝑁‘𝐴) / 2)))) |
147 | 144, 146 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁‘𝐴) · 𝐵), 1, ((𝑁‘𝐴) · 𝐵)) · ((𝑁‘𝐴) / 2)) ≤ (1 · ((𝑁‘𝐴) / 2))) |
148 | 1, 147 | eqbrtrid 5109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (1 · ((𝑁‘𝐴) / 2))) |
149 | 135 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) / 2) ∈ ℂ) |
150 | 149 | mulid2d 10993 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1 · ((𝑁‘𝐴) / 2)) = ((𝑁‘𝐴) / 2)) |
151 | 148, 150 | breqtrd 5100 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ ((𝑁‘𝐴) / 2)) |
152 | 115, 117,
135, 121, 151 | ltletrd 11135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < ((𝑁‘𝐴) / 2)) |
153 | 137, 115,
135, 142, 152 | lelttrd 11133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) − (𝑁‘𝑦)) < ((𝑁‘𝐴) / 2)) |
154 | 30, 35, 135 | ltsubadd2d 11573 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) − (𝑁‘𝑦)) < ((𝑁‘𝐴) / 2) ↔ (𝑁‘𝐴) < ((𝑁‘𝑦) + ((𝑁‘𝐴) / 2)))) |
155 | 153, 154 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘𝐴) < ((𝑁‘𝑦) + ((𝑁‘𝐴) / 2))) |
156 | 136, 155 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) / 2) + ((𝑁‘𝐴) / 2)) < ((𝑁‘𝑦) + ((𝑁‘𝐴) / 2))) |
157 | 135, 35, 135 | ltadd1d 11568 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) / 2) < (𝑁‘𝑦) ↔ (((𝑁‘𝐴) / 2) + ((𝑁‘𝐴) / 2)) < ((𝑁‘𝑦) + ((𝑁‘𝐴) / 2)))) |
158 | 156, 157 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘𝐴) / 2) < (𝑁‘𝑦)) |
159 | 135, 35, 122, 158 | ltmul2dd 12828 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2)) < (((𝑁‘𝐴) · 𝐵) · (𝑁‘𝑦))) |
160 | 119 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℂ) |
161 | 31, 36, 160 | mul32d 11185 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵) = (((𝑁‘𝐴) · 𝐵) · (𝑁‘𝑦))) |
162 | 159, 161 | breqtrrd 5102 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘𝐴) · 𝐵) · ((𝑁‘𝐴) / 2)) < (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵)) |
163 | 117, 125,
120, 134, 162 | lelttrd 11133 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 < (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵)) |
164 | 115, 117,
120, 121, 163 | lttrd 11136 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵)) |
165 | 115, 119,
102 | ltdivmuld 12823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝐴𝐷𝑦) / ((𝑁‘𝐴) · (𝑁‘𝑦))) < 𝐵 ↔ (𝐴𝐷𝑦) < (((𝑁‘𝐴) · (𝑁‘𝑦)) · 𝐵))) |
166 | 164, 165 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁‘𝐴) · (𝑁‘𝑦))) < 𝐵) |
167 | 114, 166 | eqbrtrd 5096 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵) |
168 | 167 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ((𝐴𝐷𝑦) < 𝑇 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) |
169 | 168 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) |
170 | | breq2 5078 |
. . 3
⊢ (𝑥 = 𝑇 → ((𝐴𝐷𝑦) < 𝑥 ↔ (𝐴𝐷𝑦) < 𝑇)) |
171 | 170 | rspceaimv 3565 |
. 2
⊢ ((𝑇 ∈ ℝ+
∧ ∀𝑦 ∈
𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) |
172 | 24, 169, 171 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼‘𝐴)𝐷(𝐼‘𝑦)) < 𝐵)) |