MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcnlem Structured version   Visualization version   GIF version

Theorem nrginvrcnlem 24712
Description: Lemma for nrginvrcn 24713. Compare this proof with reccn2 15633, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.n 𝑁 = (norm‘𝑅)
nrginvrcn.d 𝐷 = (dist‘𝑅)
nrginvrcn.r (𝜑𝑅 ∈ NrmRing)
nrginvrcn.z (𝜑𝑅 ∈ NzRing)
nrginvrcn.a (𝜑𝐴𝑈)
nrginvrcn.b (𝜑𝐵 ∈ ℝ+)
nrginvrcn.t 𝑇 = (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2))
Assertion
Ref Expression
nrginvrcnlem (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐼   𝜑,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem nrginvrcnlem
StepHypRef Expression
1 nrginvrcn.t . . 3 𝑇 = (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2))
2 1rp 13038 . . . . 5 1 ∈ ℝ+
3 nrginvrcn.r . . . . . . . 8 (𝜑𝑅 ∈ NrmRing)
4 nrgngp 24683 . . . . . . . 8 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ NrmGrp)
6 nrginvrcn.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
7 nrginvrcn.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
86, 7unitss 20376 . . . . . . . 8 𝑈𝑋
9 nrginvrcn.a . . . . . . . 8 (𝜑𝐴𝑈)
108, 9sselid 3981 . . . . . . 7 (𝜑𝐴𝑋)
11 nrginvrcn.z . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
12 eqid 2737 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
137, 12nzrunit 20524 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ≠ (0g𝑅))
1411, 9, 13syl2anc 584 . . . . . . 7 (𝜑𝐴 ≠ (0g𝑅))
15 nrginvrcn.n . . . . . . . 8 𝑁 = (norm‘𝑅)
166, 15, 12nmrpcl 24633 . . . . . . 7 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝐴 ≠ (0g𝑅)) → (𝑁𝐴) ∈ ℝ+)
175, 10, 14, 16syl3anc 1373 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ+)
18 nrginvrcn.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
1917, 18rpmulcld 13093 . . . . 5 (𝜑 → ((𝑁𝐴) · 𝐵) ∈ ℝ+)
20 ifcl 4571 . . . . 5 ((1 ∈ ℝ+ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
212, 19, 20sylancr 587 . . . 4 (𝜑 → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
2217rphalfcld 13089 . . . 4 (𝜑 → ((𝑁𝐴) / 2) ∈ ℝ+)
2321, 22rpmulcld 13093 . . 3 (𝜑 → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ∈ ℝ+)
241, 23eqeltrid 2845 . 2 (𝜑𝑇 ∈ ℝ+)
255adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmGrp)
269adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴𝑈)
276, 7unitcl 20375 . . . . . . . . . . . 12 (𝐴𝑈𝐴𝑋)
2826, 27syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴𝑋)
296, 15nmcl 24629 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
3025, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℝ)
3130recnd 11289 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℂ)
32 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦𝑈)
338, 32sselid 3981 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦𝑋)
346, 15nmcl 24629 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
3525, 33, 34syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℝ)
3635recnd 11289 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℂ)
37 ngpgrp 24612 . . . . . . . . . . . . 13 (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp)
3825, 37syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Grp)
39 nrgring 24684 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
403, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
4140adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Ring)
42 nrginvrcn.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
437, 42, 6ringinvcl 20392 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ 𝑋)
4441, 26, 43syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼𝐴) ∈ 𝑋)
457, 42, 6ringinvcl 20392 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
4641, 32, 45syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼𝑦) ∈ 𝑋)
47 eqid 2737 . . . . . . . . . . . . 13 (-g𝑅) = (-g𝑅)
486, 47grpsubcl 19038 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋)
4938, 44, 46, 48syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋)
506, 15nmcl 24629 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℝ)
5125, 49, 50syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℝ)
5251recnd 11289 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℂ)
5331, 36, 52mul32d 11471 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
543adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmRing)
55 eqid 2737 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
566, 15, 55nmmul 24685 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))))
5754, 28, 49, 56syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))))
586, 55, 47, 41, 28, 44, 46ringsubdi 20304 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦))) = ((𝐴(.r𝑅)(𝐼𝐴))(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
59 eqid 2737 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
607, 42, 55, 59unitrinv 20394 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
6141, 26, 60syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
6261oveq1d 7446 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝐴))(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) = ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
6358, 62eqtrd 2777 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦))) = ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
6463fveq2d 6910 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))))
6557, 64eqtr3d 2779 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))))
6665oveq1d 7446 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) · (𝑁𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
676, 59ringidcl 20262 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑋)
6841, 67syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1r𝑅) ∈ 𝑋)
696, 55ringcl 20247 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋)
7041, 28, 46, 69syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋)
716, 47grpsubcl 19038 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝑋 ∧ (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋) → ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋)
7238, 68, 70, 71syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋)
736, 15, 55nmmul 24685 . . . . . . . . . 10 ((𝑅 ∈ NrmRing ∧ ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋𝑦𝑋) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
7454, 72, 33, 73syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
756, 55, 47, 41, 68, 70, 33ringsubdir 20305 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦) = (((1r𝑅)(.r𝑅)𝑦)(-g𝑅)((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦)))
766, 55, 59ringlidm 20266 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝑋) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
7741, 33, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
786, 55ringass 20250 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝐴𝑋 ∧ (𝐼𝑦) ∈ 𝑋𝑦𝑋)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)))
7941, 28, 46, 33, 78syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)))
807, 42, 55, 59unitlinv 20393 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → ((𝐼𝑦)(.r𝑅)𝑦) = (1r𝑅))
8141, 32, 80syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝑦)(.r𝑅)𝑦) = (1r𝑅))
8281oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)) = (𝐴(.r𝑅)(1r𝑅)))
836, 55, 59ringridm 20267 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝑋) → (𝐴(.r𝑅)(1r𝑅)) = 𝐴)
8441, 28, 83syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(1r𝑅)) = 𝐴)
8579, 82, 843eqtrd 2781 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = 𝐴)
8677, 85oveq12d 7449 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(.r𝑅)𝑦)(-g𝑅)((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦)) = (𝑦(-g𝑅)𝐴))
8775, 86eqtrd 2777 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦) = (𝑦(-g𝑅)𝐴))
8887fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = (𝑁‘(𝑦(-g𝑅)𝐴)))
8974, 88eqtr3d 2779 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)) = (𝑁‘(𝑦(-g𝑅)𝐴)))
9053, 66, 893eqtrd 2781 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘(𝑦(-g𝑅)𝐴)))
916, 47grpsubcl 19038 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦𝑋𝐴𝑋) → (𝑦(-g𝑅)𝐴) ∈ 𝑋)
9238, 33, 28, 91syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑦(-g𝑅)𝐴) ∈ 𝑋)
936, 15nmcl 24629 . . . . . . . . . 10 ((𝑅 ∈ NrmGrp ∧ (𝑦(-g𝑅)𝐴) ∈ 𝑋) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℝ)
9425, 92, 93syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℝ)
9594recnd 11289 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℂ)
9617adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℝ+)
9711adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NzRing)
987, 12nzrunit 20524 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑦𝑈) → 𝑦 ≠ (0g𝑅))
9997, 32, 98syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦 ≠ (0g𝑅))
1006, 15, 12nmrpcl 24633 . . . . . . . . . . . 12 ((𝑅 ∈ NrmGrp ∧ 𝑦𝑋𝑦 ≠ (0g𝑅)) → (𝑁𝑦) ∈ ℝ+)
10125, 33, 99, 100syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℝ+)
10296, 101rpmulcld 13093 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℝ+)
103102rpred 13077 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℝ)
104103recnd 11289 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℂ)
105102rpne0d 13082 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ≠ 0)
10695, 104, 52, 105divmuld 12065 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ↔ (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘(𝑦(-g𝑅)𝐴))))
10790, 106mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
108 nrginvrcn.d . . . . . . . . 9 𝐷 = (dist‘𝑅)
10915, 6, 47, 108ngpdsr 24618 . . . . . . . 8 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g𝑅)𝐴)))
11025, 28, 33, 109syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g𝑅)𝐴)))
111110oveq1d 7446 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) = ((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))))
11215, 6, 47, 108ngpds 24617 . . . . . . 7 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → ((𝐼𝐴)𝐷(𝐼𝑦)) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
11325, 44, 46, 112syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
114107, 111, 1133eqtr4rd 2788 . . . . 5 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) = ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))))
115110, 94eqeltrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) ∈ ℝ)
11624adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈ ℝ+)
117116rpred 13077 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈ ℝ)
11818adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℝ+)
119118rpred 13077 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℝ)
120103, 119remulcld 11291 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · 𝐵) ∈ ℝ)
121 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < 𝑇)
12219adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · 𝐵) ∈ ℝ+)
12396rphalfcld 13089 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℝ+)
124122, 123rpmulcld 13093 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) ∈ ℝ+)
125124rpred 13077 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) ∈ ℝ)
126 1re 11261 . . . . . . . . . . 11 1 ∈ ℝ
127122rpred 13077 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · 𝐵) ∈ ℝ)
128 min2 13232 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵))
129126, 127, 128sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵))
13021adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
131130rpred 13077 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ)
132131, 127, 123lemul1d 13120 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵) ↔ (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2))))
133129, 132mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)))
1341, 133eqbrtrid 5178 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)))
135123rpred 13077 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℝ)
136312halvesd 12512 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) = (𝑁𝐴))
13730, 35resubcld 11691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ∈ ℝ)
1386, 15, 47nm2dif 24638 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝑁‘(𝐴(-g𝑅)𝑦)))
13925, 28, 33, 138syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝑁‘(𝐴(-g𝑅)𝑦)))
14015, 6, 47, 108ngpds 24617 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g𝑅)𝑦)))
14125, 28, 33, 140syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g𝑅)𝑦)))
142139, 141breqtrrd 5171 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝐴𝐷𝑦))
143 min1 13231 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1)
144126, 127, 143sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1)
145 1red 11262 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 1 ∈ ℝ)
146131, 145, 123lemul1d 13120 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (1 · ((𝑁𝐴) / 2))))
147144, 146mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (1 · ((𝑁𝐴) / 2)))
1481, 147eqbrtrid 5178 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (1 · ((𝑁𝐴) / 2)))
149135recnd 11289 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℂ)
150149mullidd 11279 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1 · ((𝑁𝐴) / 2)) = ((𝑁𝐴) / 2))
151148, 150breqtrd 5169 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ ((𝑁𝐴) / 2))
152115, 117, 135, 121, 151ltletrd 11421 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < ((𝑁𝐴) / 2))
153137, 115, 135, 142, 152lelttrd 11419 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) < ((𝑁𝐴) / 2))
15430, 35, 135ltsubadd2d 11861 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) − (𝑁𝑦)) < ((𝑁𝐴) / 2) ↔ (𝑁𝐴) < ((𝑁𝑦) + ((𝑁𝐴) / 2))))
155153, 154mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) < ((𝑁𝑦) + ((𝑁𝐴) / 2)))
156136, 155eqbrtrd 5165 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) < ((𝑁𝑦) + ((𝑁𝐴) / 2)))
157135, 35, 135ltadd1d 11856 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) < (𝑁𝑦) ↔ (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) < ((𝑁𝑦) + ((𝑁𝐴) / 2))))
158156, 157mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) < (𝑁𝑦))
159135, 35, 122, 158ltmul2dd 13133 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) < (((𝑁𝐴) · 𝐵) · (𝑁𝑦)))
160119recnd 11289 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℂ)
16131, 36, 160mul32d 11471 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · 𝐵) = (((𝑁𝐴) · 𝐵) · (𝑁𝑦)))
162159, 161breqtrrd 5171 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
163117, 125, 120, 134, 162lelttrd 11419 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
164115, 117, 120, 121, 163lttrd 11422 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
165115, 119, 102ltdivmuld 13128 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) < 𝐵 ↔ (𝐴𝐷𝑦) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵)))
166164, 165mpbird 257 . . . . 5 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) < 𝐵)
167114, 166eqbrtrd 5165 . . . 4 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵)
168167expr 456 . . 3 ((𝜑𝑦𝑈) → ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
169168ralrimiva 3146 . 2 (𝜑 → ∀𝑦𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
170 breq2 5147 . . 3 (𝑥 = 𝑇 → ((𝐴𝐷𝑦) < 𝑥 ↔ (𝐴𝐷𝑦) < 𝑇))
171170rspceaimv 3628 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑦𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵)) → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
17224, 169, 171syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  Basecbs 17247  .rcmulr 17298  distcds 17306  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  1rcur 20178  Ringcrg 20230  Unitcui 20355  invrcinvr 20387  NzRingcnzr 20512  normcnm 24589  NrmGrpcngp 24590  NrmRingcnrg 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-topgen 17488  df-xrs 17547  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-abv 20810  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nrg 24598
This theorem is referenced by:  nrginvrcn  24713
  Copyright terms: Public domain W3C validator