MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcnlem Structured version   Visualization version   GIF version

Theorem nrginvrcnlem 23761
Description: Lemma for nrginvrcn 23762. Compare this proof with reccn2 15234, the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.n 𝑁 = (norm‘𝑅)
nrginvrcn.d 𝐷 = (dist‘𝑅)
nrginvrcn.r (𝜑𝑅 ∈ NrmRing)
nrginvrcn.z (𝜑𝑅 ∈ NzRing)
nrginvrcn.a (𝜑𝐴𝑈)
nrginvrcn.b (𝜑𝐵 ∈ ℝ+)
nrginvrcn.t 𝑇 = (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2))
Assertion
Ref Expression
nrginvrcnlem (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐼   𝜑,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem nrginvrcnlem
StepHypRef Expression
1 nrginvrcn.t . . 3 𝑇 = (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2))
2 1rp 12663 . . . . 5 1 ∈ ℝ+
3 nrginvrcn.r . . . . . . . 8 (𝜑𝑅 ∈ NrmRing)
4 nrgngp 23732 . . . . . . . 8 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ NrmGrp)
6 nrginvrcn.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
7 nrginvrcn.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
86, 7unitss 19817 . . . . . . . 8 𝑈𝑋
9 nrginvrcn.a . . . . . . . 8 (𝜑𝐴𝑈)
108, 9sselid 3915 . . . . . . 7 (𝜑𝐴𝑋)
11 nrginvrcn.z . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
12 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
137, 12nzrunit 20451 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ 𝐴𝑈) → 𝐴 ≠ (0g𝑅))
1411, 9, 13syl2anc 583 . . . . . . 7 (𝜑𝐴 ≠ (0g𝑅))
15 nrginvrcn.n . . . . . . . 8 𝑁 = (norm‘𝑅)
166, 15, 12nmrpcl 23682 . . . . . . 7 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝐴 ≠ (0g𝑅)) → (𝑁𝐴) ∈ ℝ+)
175, 10, 14, 16syl3anc 1369 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ+)
18 nrginvrcn.b . . . . . 6 (𝜑𝐵 ∈ ℝ+)
1917, 18rpmulcld 12717 . . . . 5 (𝜑 → ((𝑁𝐴) · 𝐵) ∈ ℝ+)
20 ifcl 4501 . . . . 5 ((1 ∈ ℝ+ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
212, 19, 20sylancr 586 . . . 4 (𝜑 → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
2217rphalfcld 12713 . . . 4 (𝜑 → ((𝑁𝐴) / 2) ∈ ℝ+)
2321, 22rpmulcld 12717 . . 3 (𝜑 → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ∈ ℝ+)
241, 23eqeltrid 2843 . 2 (𝜑𝑇 ∈ ℝ+)
255adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmGrp)
269adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴𝑈)
276, 7unitcl 19816 . . . . . . . . . . . 12 (𝐴𝑈𝐴𝑋)
2826, 27syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐴𝑋)
296, 15nmcl 23678 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
3025, 28, 29syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℝ)
3130recnd 10934 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℂ)
32 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦𝑈)
338, 32sselid 3915 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦𝑋)
346, 15nmcl 23678 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
3525, 33, 34syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℝ)
3635recnd 10934 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℂ)
37 ngpgrp 23661 . . . . . . . . . . . . 13 (𝑅 ∈ NrmGrp → 𝑅 ∈ Grp)
3825, 37syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Grp)
39 nrgring 23733 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
403, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
4140adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ Ring)
42 nrginvrcn.i . . . . . . . . . . . . . 14 𝐼 = (invr𝑅)
437, 42, 6ringinvcl 19833 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐼𝐴) ∈ 𝑋)
4441, 26, 43syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼𝐴) ∈ 𝑋)
457, 42, 6ringinvcl 19833 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
4641, 32, 45syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐼𝑦) ∈ 𝑋)
47 eqid 2738 . . . . . . . . . . . . 13 (-g𝑅) = (-g𝑅)
486, 47grpsubcl 18570 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋)
4938, 44, 46, 48syl3anc 1369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋)
506, 15nmcl 23678 . . . . . . . . . . 11 ((𝑅 ∈ NrmGrp ∧ ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℝ)
5125, 49, 50syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℝ)
5251recnd 10934 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ∈ ℂ)
5331, 36, 52mul32d 11115 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
543adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NrmRing)
55 eqid 2738 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
566, 15, 55nmmul 23734 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ 𝐴𝑋 ∧ ((𝐼𝐴)(-g𝑅)(𝐼𝑦)) ∈ 𝑋) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))))
5754, 28, 49, 56syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))))
586, 55, 47, 41, 28, 44, 46ringsubdi 19753 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦))) = ((𝐴(.r𝑅)(𝐼𝐴))(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
59 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
607, 42, 55, 59unitrinv 19835 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
6141, 26, 60syl2anc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(𝐼𝐴)) = (1r𝑅))
6261oveq1d 7270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝐴))(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) = ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
6358, 62eqtrd 2778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦))) = ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))))
6463fveq2d 6760 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝐴(.r𝑅)((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))))
6557, 64eqtr3d 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))))
6665oveq1d 7270 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) · (𝑁𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
676, 59ringidcl 19722 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑋)
6841, 67syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1r𝑅) ∈ 𝑋)
696, 55ringcl 19715 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋)
7041, 28, 46, 69syl3anc 1369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋)
716, 47grpsubcl 18570 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝑋 ∧ (𝐴(.r𝑅)(𝐼𝑦)) ∈ 𝑋) → ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋)
7238, 68, 70, 71syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋)
736, 15, 55nmmul 23734 . . . . . . . . . 10 ((𝑅 ∈ NrmRing ∧ ((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦))) ∈ 𝑋𝑦𝑋) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
7454, 72, 33, 73syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)))
756, 55, 47, 41, 68, 70, 33rngsubdir 19754 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦) = (((1r𝑅)(.r𝑅)𝑦)(-g𝑅)((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦)))
766, 55, 59ringlidm 19725 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝑋) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
7741, 33, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
786, 55ringass 19718 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝐴𝑋 ∧ (𝐼𝑦) ∈ 𝑋𝑦𝑋)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)))
7941, 28, 46, 33, 78syl13anc 1370 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)))
807, 42, 55, 59unitlinv 19834 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → ((𝐼𝑦)(.r𝑅)𝑦) = (1r𝑅))
8141, 32, 80syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝑦)(.r𝑅)𝑦) = (1r𝑅))
8281oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)((𝐼𝑦)(.r𝑅)𝑦)) = (𝐴(.r𝑅)(1r𝑅)))
836, 55, 59ringridm 19726 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝑋) → (𝐴(.r𝑅)(1r𝑅)) = 𝐴)
8441, 28, 83syl2anc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴(.r𝑅)(1r𝑅)) = 𝐴)
8579, 82, 843eqtrd 2782 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦) = 𝐴)
8677, 85oveq12d 7273 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(.r𝑅)𝑦)(-g𝑅)((𝐴(.r𝑅)(𝐼𝑦))(.r𝑅)𝑦)) = (𝑦(-g𝑅)𝐴))
8775, 86eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦) = (𝑦(-g𝑅)𝐴))
8887fveq2d 6760 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))(.r𝑅)𝑦)) = (𝑁‘(𝑦(-g𝑅)𝐴)))
8974, 88eqtr3d 2780 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘((1r𝑅)(-g𝑅)(𝐴(.r𝑅)(𝐼𝑦)))) · (𝑁𝑦)) = (𝑁‘(𝑦(-g𝑅)𝐴)))
9053, 66, 893eqtrd 2782 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘(𝑦(-g𝑅)𝐴)))
916, 47grpsubcl 18570 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦𝑋𝐴𝑋) → (𝑦(-g𝑅)𝐴) ∈ 𝑋)
9238, 33, 28, 91syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑦(-g𝑅)𝐴) ∈ 𝑋)
936, 15nmcl 23678 . . . . . . . . . 10 ((𝑅 ∈ NrmGrp ∧ (𝑦(-g𝑅)𝐴) ∈ 𝑋) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℝ)
9425, 92, 93syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℝ)
9594recnd 10934 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁‘(𝑦(-g𝑅)𝐴)) ∈ ℂ)
9617adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) ∈ ℝ+)
9711adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑅 ∈ NzRing)
987, 12nzrunit 20451 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑦𝑈) → 𝑦 ≠ (0g𝑅))
9997, 32, 98syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑦 ≠ (0g𝑅))
1006, 15, 12nmrpcl 23682 . . . . . . . . . . . 12 ((𝑅 ∈ NrmGrp ∧ 𝑦𝑋𝑦 ≠ (0g𝑅)) → (𝑁𝑦) ∈ ℝ+)
10125, 33, 99, 100syl3anc 1369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝑦) ∈ ℝ+)
10296, 101rpmulcld 12717 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℝ+)
103102rpred 12701 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℝ)
104103recnd 10934 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ∈ ℂ)
105102rpne0d 12706 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · (𝑁𝑦)) ≠ 0)
10695, 104, 52, 105divmuld 11703 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))) ↔ (((𝑁𝐴) · (𝑁𝑦)) · (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦)))) = (𝑁‘(𝑦(-g𝑅)𝐴))))
10790, 106mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
108 nrginvrcn.d . . . . . . . . 9 𝐷 = (dist‘𝑅)
10915, 6, 47, 108ngpdsr 23667 . . . . . . . 8 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g𝑅)𝐴)))
11025, 28, 33, 109syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝑦(-g𝑅)𝐴)))
111110oveq1d 7270 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) = ((𝑁‘(𝑦(-g𝑅)𝐴)) / ((𝑁𝐴) · (𝑁𝑦))))
11215, 6, 47, 108ngpds 23666 . . . . . . 7 ((𝑅 ∈ NrmGrp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → ((𝐼𝐴)𝐷(𝐼𝑦)) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
11325, 44, 46, 112syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) = (𝑁‘((𝐼𝐴)(-g𝑅)(𝐼𝑦))))
114107, 111, 1133eqtr4rd 2789 . . . . 5 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) = ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))))
115110, 94eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) ∈ ℝ)
11624adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈ ℝ+)
117116rpred 12701 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ∈ ℝ)
11818adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℝ+)
119118rpred 12701 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℝ)
120103, 119remulcld 10936 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · 𝐵) ∈ ℝ)
121 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < 𝑇)
12219adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · 𝐵) ∈ ℝ+)
12396rphalfcld 12713 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℝ+)
124122, 123rpmulcld 12717 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) ∈ ℝ+)
125124rpred 12701 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) ∈ ℝ)
126 1re 10906 . . . . . . . . . . 11 1 ∈ ℝ
127122rpred 12701 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) · 𝐵) ∈ ℝ)
128 min2 12853 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵))
129126, 127, 128sylancr 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵))
13021adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ+)
131130rpred 12701 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ∈ ℝ)
132131, 127, 123lemul1d 12744 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ ((𝑁𝐴) · 𝐵) ↔ (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2))))
133129, 132mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)))
1341, 133eqbrtrid 5105 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)))
135123rpred 12701 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℝ)
136312halvesd 12149 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) = (𝑁𝐴))
13730, 35resubcld 11333 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ∈ ℝ)
1386, 15, 47nm2dif 23687 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝑁‘(𝐴(-g𝑅)𝑦)))
13925, 28, 33, 138syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝑁‘(𝐴(-g𝑅)𝑦)))
14015, 6, 47, 108ngpds 23666 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g𝑅)𝑦)))
14125, 28, 33, 140syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) = (𝑁‘(𝐴(-g𝑅)𝑦)))
142139, 141breqtrrd 5098 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) ≤ (𝐴𝐷𝑦))
143 min1 12852 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((𝑁𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1)
144126, 127, 143sylancr 586 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1)
145 1red 10907 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 1 ∈ ℝ)
146131, 145, 123lemul1d 12744 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (1 · ((𝑁𝐴) / 2))))
147144, 146mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (if(1 ≤ ((𝑁𝐴) · 𝐵), 1, ((𝑁𝐴) · 𝐵)) · ((𝑁𝐴) / 2)) ≤ (1 · ((𝑁𝐴) / 2)))
1481, 147eqbrtrid 5105 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ (1 · ((𝑁𝐴) / 2)))
149135recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) ∈ ℂ)
150149mulid2d 10924 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (1 · ((𝑁𝐴) / 2)) = ((𝑁𝐴) / 2))
151148, 150breqtrd 5096 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 ≤ ((𝑁𝐴) / 2))
152115, 117, 135, 121, 151ltletrd 11065 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < ((𝑁𝐴) / 2))
153137, 115, 135, 142, 152lelttrd 11063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) − (𝑁𝑦)) < ((𝑁𝐴) / 2))
15430, 35, 135ltsubadd2d 11503 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) − (𝑁𝑦)) < ((𝑁𝐴) / 2) ↔ (𝑁𝐴) < ((𝑁𝑦) + ((𝑁𝐴) / 2))))
155153, 154mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝑁𝐴) < ((𝑁𝑦) + ((𝑁𝐴) / 2)))
156136, 155eqbrtrd 5092 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) < ((𝑁𝑦) + ((𝑁𝐴) / 2)))
157135, 35, 135ltadd1d 11498 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) / 2) < (𝑁𝑦) ↔ (((𝑁𝐴) / 2) + ((𝑁𝐴) / 2)) < ((𝑁𝑦) + ((𝑁𝐴) / 2))))
158156, 157mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝑁𝐴) / 2) < (𝑁𝑦))
159135, 35, 122, 158ltmul2dd 12757 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) < (((𝑁𝐴) · 𝐵) · (𝑁𝑦)))
160119recnd 10934 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝐵 ∈ ℂ)
16131, 36, 160mul32d 11115 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · (𝑁𝑦)) · 𝐵) = (((𝑁𝐴) · 𝐵) · (𝑁𝑦)))
162159, 161breqtrrd 5098 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝑁𝐴) · 𝐵) · ((𝑁𝐴) / 2)) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
163117, 125, 120, 134, 162lelttrd 11063 . . . . . . 7 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → 𝑇 < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
164115, 117, 120, 121, 163lttrd 11066 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (𝐴𝐷𝑦) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵))
165115, 119, 102ltdivmuld 12752 . . . . . 6 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → (((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) < 𝐵 ↔ (𝐴𝐷𝑦) < (((𝑁𝐴) · (𝑁𝑦)) · 𝐵)))
166164, 165mpbird 256 . . . . 5 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐴𝐷𝑦) / ((𝑁𝐴) · (𝑁𝑦))) < 𝐵)
167114, 166eqbrtrd 5092 . . . 4 ((𝜑 ∧ (𝑦𝑈 ∧ (𝐴𝐷𝑦) < 𝑇)) → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵)
168167expr 456 . . 3 ((𝜑𝑦𝑈) → ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
169168ralrimiva 3107 . 2 (𝜑 → ∀𝑦𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
170 breq2 5074 . . 3 (𝑥 = 𝑇 → ((𝐴𝐷𝑦) < 𝑥 ↔ (𝐴𝐷𝑦) < 𝑇))
171170rspceaimv 3557 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑦𝑈 ((𝐴𝐷𝑦) < 𝑇 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵)) → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
17224, 169, 171syl2anc 583 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝑈 ((𝐴𝐷𝑦) < 𝑥 → ((𝐼𝐴)𝐷(𝐼𝑦)) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  Basecbs 16840  .rcmulr 16889  distcds 16897  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  1rcur 19652  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  NzRingcnzr 20441  normcnm 23638  NrmGrpcngp 23639  NrmRingcnrg 23641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-topgen 17071  df-xrs 17130  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-abv 19992  df-nzr 20442  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nrg 23647
This theorem is referenced by:  nrginvrcn  23762
  Copyright terms: Public domain W3C validator