| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enp1iOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of enp1i 9231 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| enp1iOLD.1 | ⊢ 𝑀 ∈ ω |
| enp1iOLD.2 | ⊢ 𝑁 = suc 𝑀 |
| enp1iOLD.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
| enp1iOLD.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| enp1iOLD | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsuceq0 6420 | . . . . 5 ⊢ suc 𝑀 ≠ ∅ | |
| 2 | breq1 5113 | . . . . . . 7 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁)) | |
| 3 | enp1iOLD.2 | . . . . . . . 8 ⊢ 𝑁 = suc 𝑀 | |
| 4 | ensym 8977 | . . . . . . . . 9 ⊢ (∅ ≈ 𝑁 → 𝑁 ≈ ∅) | |
| 5 | en0 8992 | . . . . . . . . 9 ⊢ (𝑁 ≈ ∅ ↔ 𝑁 = ∅) | |
| 6 | 4, 5 | sylib 218 | . . . . . . . 8 ⊢ (∅ ≈ 𝑁 → 𝑁 = ∅) |
| 7 | 3, 6 | eqtr3id 2779 | . . . . . . 7 ⊢ (∅ ≈ 𝑁 → suc 𝑀 = ∅) |
| 8 | 2, 7 | biimtrdi 253 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 → suc 𝑀 = ∅)) |
| 9 | 8 | necon3ad 2939 | . . . . 5 ⊢ (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁)) |
| 10 | 1, 9 | mpi 20 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁) |
| 11 | 10 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅) |
| 12 | neq0 4318 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥 𝑥 ∈ 𝐴) |
| 14 | 3 | breq2i 5118 | . . . . 5 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
| 15 | enp1iOLD.1 | . . . . . . . 8 ⊢ 𝑀 ∈ ω | |
| 16 | dif1ennn 9131 | . . . . . . . 8 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
| 17 | 15, 16 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 18 | enp1iOLD.3 | . . . . . . 7 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → 𝜑) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑥 ∈ 𝐴 → 𝜑)) |
| 21 | 14, 20 | sylbi 217 | . . . 4 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜑)) |
| 22 | enp1iOLD.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 23 | 21, 22 | sylcom 30 | . . 3 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 24 | 23 | eximdv 1917 | . 2 ⊢ (𝐴 ≈ 𝑁 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜓)) |
| 25 | 13, 24 | mpd 15 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ∅c0 4299 {csn 4592 class class class wbr 5110 suc csuc 6337 ωcom 7845 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-er 8674 df-en 8922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |