![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1iOLD | Structured version Visualization version GIF version |
Description: Obsolete version of enp1i 9281 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enp1iOLD.1 | ⊢ 𝑀 ∈ ω |
enp1iOLD.2 | ⊢ 𝑁 = suc 𝑀 |
enp1iOLD.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1iOLD.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1iOLD | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6447 | . . . . 5 ⊢ suc 𝑀 ≠ ∅ | |
2 | breq1 5151 | . . . . . . 7 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁)) | |
3 | enp1iOLD.2 | . . . . . . . 8 ⊢ 𝑁 = suc 𝑀 | |
4 | ensym 9001 | . . . . . . . . 9 ⊢ (∅ ≈ 𝑁 → 𝑁 ≈ ∅) | |
5 | en0 9015 | . . . . . . . . 9 ⊢ (𝑁 ≈ ∅ ↔ 𝑁 = ∅) | |
6 | 4, 5 | sylib 217 | . . . . . . . 8 ⊢ (∅ ≈ 𝑁 → 𝑁 = ∅) |
7 | 3, 6 | eqtr3id 2786 | . . . . . . 7 ⊢ (∅ ≈ 𝑁 → suc 𝑀 = ∅) |
8 | 2, 7 | syl6bi 252 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 → suc 𝑀 = ∅)) |
9 | 8 | necon3ad 2953 | . . . . 5 ⊢ (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁)) |
10 | 1, 9 | mpi 20 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁) |
11 | 10 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅) |
12 | neq0 4345 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sylib 217 | . 2 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥 𝑥 ∈ 𝐴) |
14 | 3 | breq2i 5156 | . . . . 5 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
15 | enp1iOLD.1 | . . . . . . . 8 ⊢ 𝑀 ∈ ω | |
16 | dif1ennn 9163 | . . . . . . . 8 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
17 | 15, 16 | mp3an1 1448 | . . . . . . 7 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | enp1iOLD.3 | . . . . . . 7 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → 𝜑) |
20 | 19 | ex 413 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑥 ∈ 𝐴 → 𝜑)) |
21 | 14, 20 | sylbi 216 | . . . 4 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜑)) |
22 | enp1iOLD.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
23 | 21, 22 | sylcom 30 | . . 3 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜓)) |
24 | 23 | eximdv 1920 | . 2 ⊢ (𝐴 ≈ 𝑁 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜓)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3945 ∅c0 4322 {csn 4628 class class class wbr 5148 suc csuc 6366 ωcom 7857 ≈ cen 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-er 8705 df-en 8942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |