![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1iOLD | Structured version Visualization version GIF version |
Description: Obsolete version of enp1i 9313 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enp1iOLD.1 | ⊢ 𝑀 ∈ ω |
enp1iOLD.2 | ⊢ 𝑁 = suc 𝑀 |
enp1iOLD.3 | ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) |
enp1iOLD.4 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
enp1iOLD | ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsuceq0 6459 | . . . . 5 ⊢ suc 𝑀 ≠ ∅ | |
2 | breq1 5156 | . . . . . . 7 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁)) | |
3 | enp1iOLD.2 | . . . . . . . 8 ⊢ 𝑁 = suc 𝑀 | |
4 | ensym 9034 | . . . . . . . . 9 ⊢ (∅ ≈ 𝑁 → 𝑁 ≈ ∅) | |
5 | en0 9049 | . . . . . . . . 9 ⊢ (𝑁 ≈ ∅ ↔ 𝑁 = ∅) | |
6 | 4, 5 | sylib 217 | . . . . . . . 8 ⊢ (∅ ≈ 𝑁 → 𝑁 = ∅) |
7 | 3, 6 | eqtr3id 2780 | . . . . . . 7 ⊢ (∅ ≈ 𝑁 → suc 𝑀 = ∅) |
8 | 2, 7 | biimtrdi 252 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ≈ 𝑁 → suc 𝑀 = ∅)) |
9 | 8 | necon3ad 2943 | . . . . 5 ⊢ (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁)) |
10 | 1, 9 | mpi 20 | . . . 4 ⊢ (𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁) |
11 | 10 | con2i 139 | . . 3 ⊢ (𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅) |
12 | neq0 4348 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sylib 217 | . 2 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥 𝑥 ∈ 𝐴) |
14 | 3 | breq2i 5161 | . . . . 5 ⊢ (𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀) |
15 | enp1iOLD.1 | . . . . . . . 8 ⊢ 𝑀 ∈ ω | |
16 | dif1ennn 9199 | . . . . . . . 8 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) | |
17 | 15, 16 | mp3an1 1445 | . . . . . . 7 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀) |
18 | enp1iOLD.3 | . . . . . . 7 ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴) → 𝜑) |
20 | 19 | ex 411 | . . . . 5 ⊢ (𝐴 ≈ suc 𝑀 → (𝑥 ∈ 𝐴 → 𝜑)) |
21 | 14, 20 | sylbi 216 | . . . 4 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜑)) |
22 | enp1iOLD.4 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
23 | 21, 22 | sylcom 30 | . . 3 ⊢ (𝐴 ≈ 𝑁 → (𝑥 ∈ 𝐴 → 𝜓)) |
24 | 23 | eximdv 1913 | . 2 ⊢ (𝐴 ≈ 𝑁 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜓)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3944 ∅c0 4325 {csn 4633 class class class wbr 5153 suc csuc 6378 ωcom 7876 ≈ cen 8971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-om 7877 df-er 8734 df-en 8975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |