MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1iOLD Structured version   Visualization version   GIF version

Theorem enp1iOLD 9201
Description: Obsolete version of enp1i 9200 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
enp1iOLD.1 𝑀 ∈ ω
enp1iOLD.2 𝑁 = suc 𝑀
enp1iOLD.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1iOLD.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1iOLD (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem enp1iOLD
StepHypRef Expression
1 nsuceq0 6405 . . . . 5 suc 𝑀 ≠ ∅
2 breq1 5105 . . . . . . 7 (𝐴 = ∅ → (𝐴𝑁 ↔ ∅ ≈ 𝑁))
3 enp1iOLD.2 . . . . . . . 8 𝑁 = suc 𝑀
4 ensym 8951 . . . . . . . . 9 (∅ ≈ 𝑁𝑁 ≈ ∅)
5 en0 8966 . . . . . . . . 9 (𝑁 ≈ ∅ ↔ 𝑁 = ∅)
64, 5sylib 218 . . . . . . . 8 (∅ ≈ 𝑁𝑁 = ∅)
73, 6eqtr3id 2778 . . . . . . 7 (∅ ≈ 𝑁 → suc 𝑀 = ∅)
82, 7biimtrdi 253 . . . . . 6 (𝐴 = ∅ → (𝐴𝑁 → suc 𝑀 = ∅))
98necon3ad 2938 . . . . 5 (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴𝑁))
101, 9mpi 20 . . . 4 (𝐴 = ∅ → ¬ 𝐴𝑁)
1110con2i 139 . . 3 (𝐴𝑁 → ¬ 𝐴 = ∅)
12 neq0 4311 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
1311, 12sylib 218 . 2 (𝐴𝑁 → ∃𝑥 𝑥𝐴)
143breq2i 5110 . . . . 5 (𝐴𝑁𝐴 ≈ suc 𝑀)
15 enp1iOLD.1 . . . . . . . 8 𝑀 ∈ ω
16 dif1ennn 9102 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
1715, 16mp3an1 1450 . . . . . . 7 ((𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
18 enp1iOLD.3 . . . . . . 7 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1917, 18syl 17 . . . . . 6 ((𝐴 ≈ suc 𝑀𝑥𝐴) → 𝜑)
2019ex 412 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑥𝐴𝜑))
2114, 20sylbi 217 . . . 4 (𝐴𝑁 → (𝑥𝐴𝜑))
22 enp1iOLD.4 . . . 4 (𝑥𝐴 → (𝜑𝜓))
2321, 22sylcom 30 . . 3 (𝐴𝑁 → (𝑥𝐴𝜓))
2423eximdv 1917 . 2 (𝐴𝑁 → (∃𝑥 𝑥𝐴 → ∃𝑥𝜓))
2513, 24mpd 15 1 (𝐴𝑁 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  cdif 3908  c0 4292  {csn 4585   class class class wbr 5102  suc csuc 6322  ωcom 7822  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-er 8648  df-en 8896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator