| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limenpsi | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| limenpsi.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limenpsi | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 5299 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ∈ V) | |
| 2 | limenpsi.1 | . . . . . . 7 ⊢ Lim 𝐴 | |
| 3 | limsuc 7844 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴) |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) |
| 6 | nsuceq0 6437 | . . . . 5 ⊢ suc 𝑥 ≠ ∅ | |
| 7 | eldifsn 4762 | . . . . 5 ⊢ (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅)) | |
| 8 | 5, 6, 7 | sylanblrc 590 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅})) |
| 9 | limord 6413 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 11 | ordelon 6376 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 12 | 10, 11 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
| 13 | ordelon 6376 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
| 14 | 10, 13 | mpan 690 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ On) |
| 15 | suc11 6461 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) | |
| 16 | 12, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) |
| 17 | 8, 16 | dom3 9010 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 18 | 1, 17 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 19 | difss 4111 | . . 3 ⊢ (𝐴 ∖ {∅}) ⊆ 𝐴 | |
| 20 | ssdomg 9014 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴)) | |
| 21 | 19, 20 | mpi 20 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴) |
| 22 | sbth 9107 | . 2 ⊢ ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅})) | |
| 23 | 18, 21, 22 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 {csn 4601 class class class wbr 5119 Ord word 6351 Oncon0 6352 Lim wlim 6353 suc csuc 6354 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-en 8960 df-dom 8961 |
| This theorem is referenced by: limensuci 9167 omenps 9669 infdifsn 9671 ominf4 10326 |
| Copyright terms: Public domain | W3C validator |