![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limenpsi | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
limenpsi.1 | ⊢ Lim 𝐴 |
Ref | Expression |
---|---|
limenpsi | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 5045 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ∈ V) | |
2 | limenpsi.1 | . . . . . . 7 ⊢ Lim 𝐴 | |
3 | limsuc 7327 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴) |
5 | 4 | biimpi 208 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) |
6 | nsuceq0 6056 | . . . . 5 ⊢ suc 𝑥 ≠ ∅ | |
7 | eldifsn 4550 | . . . . 5 ⊢ (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅)) | |
8 | 5, 6, 7 | sylanblrc 584 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅})) |
9 | limord 6035 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
10 | 2, 9 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
11 | ordelon 6000 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
12 | 10, 11 | mpan 680 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
13 | ordelon 6000 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
14 | 10, 13 | mpan 680 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ On) |
15 | suc11 6079 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) | |
16 | 12, 14, 15 | syl2an 589 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) |
17 | 8, 16 | dom3 8285 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅})) |
18 | 1, 17 | mpdan 677 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ∖ {∅})) |
19 | difss 3960 | . . 3 ⊢ (𝐴 ∖ {∅}) ⊆ 𝐴 | |
20 | ssdomg 8287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴)) | |
21 | 19, 20 | mpi 20 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴) |
22 | sbth 8368 | . 2 ⊢ ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅})) | |
23 | 18, 21, 22 | syl2anc 579 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∖ cdif 3789 ⊆ wss 3792 ∅c0 4141 {csn 4398 class class class wbr 4886 Ord word 5975 Oncon0 5976 Lim wlim 5977 suc csuc 5978 ≈ cen 8238 ≼ cdom 8239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-en 8242 df-dom 8243 |
This theorem is referenced by: limensuci 8424 omenps 8849 infdifsn 8851 ominf4 9469 |
Copyright terms: Public domain | W3C validator |