MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limenpsi Structured version   Visualization version   GIF version

Theorem limenpsi 8683
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
limenpsi.1 Lim 𝐴
Assertion
Ref Expression
limenpsi (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))

Proof of Theorem limenpsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 5217 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ∈ V)
2 limenpsi.1 . . . . . . 7 Lim 𝐴
3 limsuc 7554 . . . . . . 7 (Lim 𝐴 → (𝑥𝐴 ↔ suc 𝑥𝐴))
42, 3ax-mp 5 . . . . . 6 (𝑥𝐴 ↔ suc 𝑥𝐴)
54biimpi 219 . . . . 5 (𝑥𝐴 → suc 𝑥𝐴)
6 nsuceq0 6258 . . . . 5 suc 𝑥 ≠ ∅
7 eldifsn 4703 . . . . 5 (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥𝐴 ∧ suc 𝑥 ≠ ∅))
85, 6, 7sylanblrc 593 . . . 4 (𝑥𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅}))
9 limord 6237 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
102, 9ax-mp 5 . . . . . 6 Ord 𝐴
11 ordelon 6202 . . . . . 6 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
1210, 11mpan 689 . . . . 5 (𝑥𝐴𝑥 ∈ On)
13 ordelon 6202 . . . . . 6 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
1410, 13mpan 689 . . . . 5 (𝑦𝐴𝑦 ∈ On)
15 suc11 6281 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
1612, 14, 15syl2an 598 . . . 4 ((𝑥𝐴𝑦𝐴) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
178, 16dom3 8543 . . 3 ((𝐴𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅}))
181, 17mpdan 686 . 2 (𝐴𝑉𝐴 ≼ (𝐴 ∖ {∅}))
19 difss 4093 . . 3 (𝐴 ∖ {∅}) ⊆ 𝐴
20 ssdomg 8545 . . 3 (𝐴𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴))
2119, 20mpi 20 . 2 (𝐴𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴)
22 sbth 8628 . 2 ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅}))
2318, 21, 22syl2anc 587 1 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  wne 3014  Vcvv 3480  cdif 3916  wss 3919  c0 4275  {csn 4549   class class class wbr 5052  Ord word 6177  Oncon0 6178  Lim wlim 6179  suc csuc 6180  cen 8496  cdom 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-en 8500  df-dom 8501
This theorem is referenced by:  limensuci  8684  omenps  9109  infdifsn  9111  ominf4  9726
  Copyright terms: Public domain W3C validator