| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limenpsi | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| limenpsi.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limenpsi | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 5287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ∈ V) | |
| 2 | limenpsi.1 | . . . . . . 7 ⊢ Lim 𝐴 | |
| 3 | limsuc 7828 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴) |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) |
| 6 | nsuceq0 6420 | . . . . 5 ⊢ suc 𝑥 ≠ ∅ | |
| 7 | eldifsn 4753 | . . . . 5 ⊢ (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅)) | |
| 8 | 5, 6, 7 | sylanblrc 590 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅})) |
| 9 | limord 6396 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 11 | ordelon 6359 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 12 | 10, 11 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
| 13 | ordelon 6359 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
| 14 | 10, 13 | mpan 690 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ On) |
| 15 | suc11 6444 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) | |
| 16 | 12, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) |
| 17 | 8, 16 | dom3 8970 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 18 | 1, 17 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 19 | difss 4102 | . . 3 ⊢ (𝐴 ∖ {∅}) ⊆ 𝐴 | |
| 20 | ssdomg 8974 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴)) | |
| 21 | 19, 20 | mpi 20 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴) |
| 22 | sbth 9067 | . 2 ⊢ ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅})) | |
| 23 | 18, 21, 22 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 Ord word 6334 Oncon0 6335 Lim wlim 6336 suc csuc 6337 ≈ cen 8918 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 df-dom 8923 |
| This theorem is referenced by: limensuci 9123 omenps 9615 infdifsn 9617 ominf4 10272 |
| Copyright terms: Public domain | W3C validator |