MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limenpsi Structured version   Visualization version   GIF version

Theorem limenpsi 9099
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
limenpsi.1 Lim 𝐴
Assertion
Ref Expression
limenpsi (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))

Proof of Theorem limenpsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 5285 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ∈ V)
2 limenpsi.1 . . . . . . 7 Lim 𝐴
3 limsuc 7786 . . . . . . 7 (Lim 𝐴 → (𝑥𝐴 ↔ suc 𝑥𝐴))
42, 3ax-mp 5 . . . . . 6 (𝑥𝐴 ↔ suc 𝑥𝐴)
54biimpi 215 . . . . 5 (𝑥𝐴 → suc 𝑥𝐴)
6 nsuceq0 6401 . . . . 5 suc 𝑥 ≠ ∅
7 eldifsn 4748 . . . . 5 (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥𝐴 ∧ suc 𝑥 ≠ ∅))
85, 6, 7sylanblrc 591 . . . 4 (𝑥𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅}))
9 limord 6378 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
102, 9ax-mp 5 . . . . . 6 Ord 𝐴
11 ordelon 6342 . . . . . 6 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
1210, 11mpan 689 . . . . 5 (𝑥𝐴𝑥 ∈ On)
13 ordelon 6342 . . . . . 6 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
1410, 13mpan 689 . . . . 5 (𝑦𝐴𝑦 ∈ On)
15 suc11 6425 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
1612, 14, 15syl2an 597 . . . 4 ((𝑥𝐴𝑦𝐴) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
178, 16dom3 8939 . . 3 ((𝐴𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅}))
181, 17mpdan 686 . 2 (𝐴𝑉𝐴 ≼ (𝐴 ∖ {∅}))
19 difss 4092 . . 3 (𝐴 ∖ {∅}) ⊆ 𝐴
20 ssdomg 8943 . . 3 (𝐴𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴))
2119, 20mpi 20 . 2 (𝐴𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴)
22 sbth 9040 . 2 ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅}))
2318, 21, 22syl2anc 585 1 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  cdif 3908  wss 3911  c0 4283  {csn 4587   class class class wbr 5106  Ord word 6317  Oncon0 6318  Lim wlim 6319  suc csuc 6320  cen 8883  cdom 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-en 8887  df-dom 8888
This theorem is referenced by:  limensuci  9100  omenps  9596  infdifsn  9598  ominf4  10253
  Copyright terms: Public domain W3C validator