| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limenpsi | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| limenpsi.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limenpsi | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 5262 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ∈ V) | |
| 2 | limenpsi.1 | . . . . . . 7 ⊢ Lim 𝐴 | |
| 3 | limsuc 7774 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴) |
| 5 | 4 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) |
| 6 | nsuceq0 6386 | . . . . 5 ⊢ suc 𝑥 ≠ ∅ | |
| 7 | eldifsn 4733 | . . . . 5 ⊢ (suc 𝑥 ∈ (𝐴 ∖ {∅}) ↔ (suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅)) | |
| 8 | 5, 6, 7 | sylanblrc 590 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → suc 𝑥 ∈ (𝐴 ∖ {∅})) |
| 9 | limord 6362 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 11 | ordelon 6325 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 12 | 10, 11 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
| 13 | ordelon 6325 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
| 14 | 10, 13 | mpan 690 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ On) |
| 15 | suc11 6410 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) | |
| 16 | 12, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) |
| 17 | 8, 16 | dom3 8913 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 ∖ {∅}) ∈ V) → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 18 | 1, 17 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ∖ {∅})) |
| 19 | difss 4081 | . . 3 ⊢ (𝐴 ∖ {∅}) ⊆ 𝐴 | |
| 20 | ssdomg 8917 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ⊆ 𝐴 → (𝐴 ∖ {∅}) ≼ 𝐴)) | |
| 21 | 19, 20 | mpi 20 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≼ 𝐴) |
| 22 | sbth 9005 | . 2 ⊢ ((𝐴 ≼ (𝐴 ∖ {∅}) ∧ (𝐴 ∖ {∅}) ≼ 𝐴) → 𝐴 ≈ (𝐴 ∖ {∅})) | |
| 23 | 18, 21, 22 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4278 {csn 4571 class class class wbr 5086 Ord word 6300 Oncon0 6301 Lim wlim 6302 suc csuc 6303 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-en 8865 df-dom 8866 |
| This theorem is referenced by: limensuci 9061 omenps 9540 infdifsn 9542 ominf4 10198 |
| Copyright terms: Public domain | W3C validator |