MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elsuc Structured version   Visualization version   GIF version

Theorem 0elsuc 7854
Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
0elsuc (Ord 𝐴 → ∅ ∈ suc 𝐴)

Proof of Theorem 0elsuc
StepHypRef Expression
1 ordsuc 7832 . 2 (Ord 𝐴 ↔ Ord suc 𝐴)
2 nsuceq0 6468 . . 3 suc 𝐴 ≠ ∅
3 ord0eln0 6440 . . 3 (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅))
42, 3mpbiri 258 . 2 (Ord suc 𝐴 → ∅ ∈ suc 𝐴)
51, 4sylbi 217 1 (Ord 𝐴 → ∅ ∈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wne 2937  c0 4338  Ord word 6384  suc csuc 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-ord 6388  df-on 6389  df-suc 6391
This theorem is referenced by:  oesuclem  8561  nnaordex2  8675  ssttrcl  9752  ttrcltr  9753  ttrclss  9757  ttrclselem2  9763  axdc3lem2  10488  axdc3lem4  10490  onov0suclim  43263  minregex  43523
  Copyright terms: Public domain W3C validator