| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 0elsuc | ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7805 | . 2 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | nsuceq0 6436 | . . 3 ⊢ suc 𝐴 ≠ ∅ | |
| 3 | ord0eln0 6408 | . . 3 ⊢ (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (Ord suc 𝐴 → ∅ ∈ suc 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 Ord word 6351 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 |
| This theorem is referenced by: oesuclem 8535 nnaordex2 8649 ssttrcl 9727 ttrcltr 9728 ttrclss 9732 ttrclselem2 9738 axdc3lem2 10463 axdc3lem4 10465 onov0suclim 43245 minregex 43505 |
| Copyright terms: Public domain | W3C validator |