| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 0elsuc | ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7747 | . 2 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | nsuceq0 6392 | . . 3 ⊢ suc 𝐴 ≠ ∅ | |
| 3 | ord0eln0 6363 | . . 3 ⊢ (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (Ord suc 𝐴 → ∅ ∈ suc 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 Ord word 6306 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 |
| This theorem is referenced by: oesuclem 8443 nnaordex2 8557 ssttrcl 9611 ttrcltr 9612 ttrclss 9616 ttrclselem2 9622 axdc3lem2 10345 axdc3lem4 10347 fineqvnttrclse 35083 onov0suclim 43257 minregex 43517 |
| Copyright terms: Public domain | W3C validator |