| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elsuc | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 0elsuc | ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7768 | . 2 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | nsuceq0 6405 | . . 3 ⊢ suc 𝐴 ≠ ∅ | |
| 3 | ord0eln0 6376 | . . 3 ⊢ (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (Ord suc 𝐴 → ∅ ∈ suc 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 Ord word 6319 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 |
| This theorem is referenced by: oesuclem 8466 nnaordex2 8580 ssttrcl 9644 ttrcltr 9645 ttrclss 9649 ttrclselem2 9655 axdc3lem2 10380 axdc3lem4 10382 onov0suclim 43256 minregex 43516 |
| Copyright terms: Public domain | W3C validator |