MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elsuc Structured version   Visualization version   GIF version

Theorem 0elsuc 7235
Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
0elsuc (Ord 𝐴 → ∅ ∈ suc 𝐴)

Proof of Theorem 0elsuc
StepHypRef Expression
1 ordsuc 7214 . 2 (Ord 𝐴 ↔ Ord suc 𝐴)
2 nsuceq0 5990 . . 3 suc 𝐴 ≠ ∅
3 ord0eln0 5964 . . 3 (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅))
42, 3mpbiri 249 . 2 (Ord suc 𝐴 → ∅ ∈ suc 𝐴)
51, 4sylbi 208 1 (Ord 𝐴 → ∅ ∈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2155  wne 2937  c0 4081  Ord word 5909  suc csuc 5912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-tr 4914  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-ord 5913  df-on 5914  df-suc 5916
This theorem is referenced by:  oesuclem  7812  axdc3lem2  9528  axdc3lem4  9530
  Copyright terms: Public domain W3C validator