![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
0elsuc | ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7832 | . 2 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | nsuceq0 6468 | . . 3 ⊢ suc 𝐴 ≠ ∅ | |
3 | ord0eln0 6440 | . . 3 ⊢ (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (Ord suc 𝐴 → ∅ ∈ suc 𝐴) |
5 | 1, 4 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 Ord word 6384 suc csuc 6387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-suc 6391 |
This theorem is referenced by: oesuclem 8561 nnaordex2 8675 ssttrcl 9752 ttrcltr 9753 ttrclss 9757 ttrclselem2 9763 axdc3lem2 10488 axdc3lem4 10490 onov0suclim 43263 minregex 43523 |
Copyright terms: Public domain | W3C validator |