![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
0elsuc | ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7849 | . 2 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | nsuceq0 6478 | . . 3 ⊢ suc 𝐴 ≠ ∅ | |
3 | ord0eln0 6450 | . . 3 ⊢ (Ord suc 𝐴 → (∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (Ord suc 𝐴 → ∅ ∈ suc 𝐴) |
5 | 1, 4 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Ord word 6394 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: oesuclem 8581 nnaordex2 8695 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 axdc3lem2 10520 axdc3lem4 10522 onov0suclim 43236 minregex 43496 |
Copyright terms: Public domain | W3C validator |