MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fv Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fv 30153
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
numclwwlk.t 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fv (π‘Š ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜π‘Š) = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑀,π‘Š   𝑒,𝐢   𝑒,𝐹   𝑒,𝐺,𝑀   𝑒,𝑁   𝑒,𝑉   𝑒,𝑋   𝑒,π‘Š
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝑇(𝑀,𝑣,𝑒,𝑛)   𝐹(𝑣,𝑛)   π‘Š(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fv
StepHypRef Expression
1 oveq1 7421 . . 3 (𝑒 = π‘Š β†’ (𝑒 prefix (𝑁 βˆ’ 2)) = (π‘Š prefix (𝑁 βˆ’ 2)))
2 fveq1 6890 . . 3 (𝑒 = π‘Š β†’ (π‘’β€˜(𝑁 βˆ’ 1)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
31, 2opeq12d 4877 . 2 (𝑒 = π‘Š β†’ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩ = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
4 numclwwlk.t . 2 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
5 opex 5460 . 2 ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩ ∈ V
63, 4, 5fvmpt 6999 1 (π‘Š ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜π‘Š) = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  {crab 3427  βŸ¨cop 4630   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  1c1 11131   βˆ’ cmin 11466  2c2 12289  β„€β‰₯cuz 12844   prefix cpfx 14644  Vtxcvtx 28796  ClWWalksNOncclwwlknon 29884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417
This theorem is referenced by:  numclwwlk1lem2f1  30154  numclwwlk1lem2fo  30155
  Copyright terms: Public domain W3C validator