MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fv Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fv 29606
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
numclwwlk.t 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fv (π‘Š ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜π‘Š) = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑀,π‘Š   𝑒,𝐢   𝑒,𝐹   𝑒,𝐺,𝑀   𝑒,𝑁   𝑒,𝑉   𝑒,𝑋   𝑒,π‘Š
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝑇(𝑀,𝑣,𝑒,𝑛)   𝐹(𝑣,𝑛)   π‘Š(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fv
StepHypRef Expression
1 oveq1 7415 . . 3 (𝑒 = π‘Š β†’ (𝑒 prefix (𝑁 βˆ’ 2)) = (π‘Š prefix (𝑁 βˆ’ 2)))
2 fveq1 6890 . . 3 (𝑒 = π‘Š β†’ (π‘’β€˜(𝑁 βˆ’ 1)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
31, 2opeq12d 4881 . 2 (𝑒 = π‘Š β†’ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩ = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
4 numclwwlk.t . 2 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
5 opex 5464 . 2 ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩ ∈ V
63, 4, 5fvmpt 6998 1 (π‘Š ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜π‘Š) = ⟨(π‘Š prefix (𝑁 βˆ’ 2)), (π‘Šβ€˜(𝑁 βˆ’ 1))⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  βŸ¨cop 4634   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  1c1 11110   βˆ’ cmin 11443  2c2 12266  β„€β‰₯cuz 12821   prefix cpfx 14619  Vtxcvtx 28253  ClWWalksNOncclwwlknon 29337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411
This theorem is referenced by:  numclwwlk1lem2f1  29607  numclwwlk1lem2fo  29608
  Copyright terms: Public domain W3C validator