| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| Ref | Expression |
|---|---|
| numclwwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7361 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
| 2 | fveq1 6829 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
| 3 | 1, 2 | opeq12d 4834 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
| 4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
| 5 | opex 5409 | . 2 ⊢ 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉 ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6937 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 〈cop 4583 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 1c1 11016 − cmin 11353 2c2 12189 ℤ≥cuz 12740 prefix cpfx 14582 Vtxcvtx 28978 ClWWalksNOncclwwlknon 30071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 |
| This theorem is referenced by: numclwwlk1lem2f1 30341 numclwwlk1lem2fo 30342 |
| Copyright terms: Public domain | W3C validator |