MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fv Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fv 30388
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fv (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑢,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fv
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2)))
2 fveq1 6919 . . 3 (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
31, 2opeq12d 4905 . 2 (𝑢 = 𝑊 → ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩ = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
4 numclwwlk.t . 2 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
5 opex 5484 . 2 ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩ ∈ V
63, 4, 5fvmpt 7029 1 (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cop 4654  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  1c1 11185  cmin 11520  2c2 12348  cuz 12903   prefix cpfx 14718  Vtxcvtx 29031  ClWWalksNOncclwwlknon 30119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  numclwwlk1lem2f1  30389  numclwwlk1lem2fo  30390
  Copyright terms: Public domain W3C validator