![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7423 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
2 | fveq1 6892 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
3 | 1, 2 | opeq12d 4879 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
5 | opex 5462 | . 2 ⊢ 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 7001 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 〈cop 4629 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 ∈ cmpo 7418 1c1 11150 − cmin 11485 2c2 12313 ℤ≥cuz 12868 prefix cpfx 14673 Vtxcvtx 28929 ClWWalksNOncclwwlknon 30017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 |
This theorem is referenced by: numclwwlk1lem2f1 30287 numclwwlk1lem2fo 30288 |
Copyright terms: Public domain | W3C validator |