![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function π. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | β’ π = (VtxβπΊ) |
extwwlkfab.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
extwwlkfab.f | β’ πΉ = (π(ClWWalksNOnβπΊ)(π β 2)) |
numclwwlk.t | β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) |
Ref | Expression |
---|---|
numclwwlk1lem2fv | β’ (π β (ππΆπ) β (πβπ) = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7421 | . . 3 β’ (π’ = π β (π’ prefix (π β 2)) = (π prefix (π β 2))) | |
2 | fveq1 6890 | . . 3 β’ (π’ = π β (π’β(π β 1)) = (πβ(π β 1))) | |
3 | 1, 2 | opeq12d 4877 | . 2 β’ (π’ = π β β¨(π’ prefix (π β 2)), (π’β(π β 1))β© = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
4 | numclwwlk.t | . 2 β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) | |
5 | opex 5460 | . 2 β’ β¨(π prefix (π β 2)), (πβ(π β 1))β© β V | |
6 | 3, 4, 5 | fvmpt 6999 | 1 β’ (π β (ππΆπ) β (πβπ) = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 {crab 3427 β¨cop 4630 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 β cmpo 7416 1c1 11131 β cmin 11466 2c2 12289 β€β₯cuz 12844 prefix cpfx 14644 Vtxcvtx 28796 ClWWalksNOncclwwlknon 29884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 |
This theorem is referenced by: numclwwlk1lem2f1 30154 numclwwlk1lem2fo 30155 |
Copyright terms: Public domain | W3C validator |