Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7324 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
2 | fveq1 6811 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
3 | 1, 2 | opeq12d 4823 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
5 | opex 5398 | . 2 ⊢ 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 6915 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3404 〈cop 4577 ↦ cmpt 5170 ‘cfv 6466 (class class class)co 7317 ∈ cmpo 7319 1c1 10952 − cmin 11285 2c2 12108 ℤ≥cuz 12662 prefix cpfx 14462 Vtxcvtx 27502 ClWWalksNOncclwwlknon 28587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-iota 6418 df-fun 6468 df-fv 6474 df-ov 7320 |
This theorem is referenced by: numclwwlk1lem2f1 28857 numclwwlk1lem2fo 28858 |
Copyright terms: Public domain | W3C validator |