MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fv Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fv 28621
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fv (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑊   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑊
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑢,𝑛)   𝐹(𝑣,𝑛)   𝑊(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fv
StepHypRef Expression
1 oveq1 7262 . . 3 (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2)))
2 fveq1 6755 . . 3 (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1)))
31, 2opeq12d 4809 . 2 (𝑢 = 𝑊 → ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩ = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
4 numclwwlk.t . 2 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
5 opex 5373 . 2 ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩ ∈ V
63, 4, 5fvmpt 6857 1 (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇𝑊) = ⟨(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  cop 4564  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  1c1 10803  cmin 11135  2c2 11958  cuz 12511   prefix cpfx 14311  Vtxcvtx 27269  ClWWalksNOncclwwlknon 28352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258
This theorem is referenced by:  numclwwlk1lem2f1  28622  numclwwlk1lem2fo  28623
  Copyright terms: Public domain W3C validator