![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwwlk1lem2fv | ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢 prefix (𝑁 − 2)) = (𝑊 prefix (𝑁 − 2))) | |
2 | fveq1 6919 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢‘(𝑁 − 1)) = (𝑊‘(𝑁 − 1))) | |
3 | 1, 2 | opeq12d 4905 | . 2 ⊢ (𝑢 = 𝑊 → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
4 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
5 | opex 5484 | . 2 ⊢ 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉 ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | 1 ⊢ (𝑊 ∈ (𝑋𝐶𝑁) → (𝑇‘𝑊) = 〈(𝑊 prefix (𝑁 − 2)), (𝑊‘(𝑁 − 1))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 〈cop 4654 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1c1 11185 − cmin 11520 2c2 12348 ℤ≥cuz 12903 prefix cpfx 14718 Vtxcvtx 29031 ClWWalksNOncclwwlknon 30119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 |
This theorem is referenced by: numclwwlk1lem2f1 30389 numclwwlk1lem2fo 30390 |
Copyright terms: Public domain | W3C validator |