![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2fv | Structured version Visualization version GIF version |
Description: Value of the function π. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | β’ π = (VtxβπΊ) |
extwwlkfab.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
extwwlkfab.f | β’ πΉ = (π(ClWWalksNOnβπΊ)(π β 2)) |
numclwwlk.t | β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) |
Ref | Expression |
---|---|
numclwwlk1lem2fv | β’ (π β (ππΆπ) β (πβπ) = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7424 | . . 3 β’ (π’ = π β (π’ prefix (π β 2)) = (π prefix (π β 2))) | |
2 | fveq1 6893 | . . 3 β’ (π’ = π β (π’β(π β 1)) = (πβ(π β 1))) | |
3 | 1, 2 | opeq12d 4882 | . 2 β’ (π’ = π β β¨(π’ prefix (π β 2)), (π’β(π β 1))β© = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
4 | numclwwlk.t | . 2 β’ π = (π’ β (ππΆπ) β¦ β¨(π’ prefix (π β 2)), (π’β(π β 1))β©) | |
5 | opex 5465 | . 2 β’ β¨(π prefix (π β 2)), (πβ(π β 1))β© β V | |
6 | 3, 4, 5 | fvmpt 7002 | 1 β’ (π β (ππΆπ) β (πβπ) = β¨(π prefix (π β 2)), (πβ(π β 1))β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3419 β¨cop 4635 β¦ cmpt 5231 βcfv 6547 (class class class)co 7417 β cmpo 7419 1c1 11139 β cmin 11474 2c2 12297 β€β₯cuz 12852 prefix cpfx 14652 Vtxcvtx 28865 ClWWalksNOncclwwlknon 29953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 |
This theorem is referenced by: numclwwlk1lem2f1 30223 numclwwlk1lem2fo 30224 |
Copyright terms: Public domain | W3C validator |