![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2f | Structured version Visualization version GIF version |
Description: 𝑇 is a function, mapping a double loop of length 𝑁 on vertex 𝑋 to the ordered pair of the first loop and the successor of 𝑋 in the second loop, which must be a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwwlk1lem2f | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
3 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
4 | 1, 2, 3 | extwwlkfabel 29195 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) ↔ (𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)))) |
5 | simpr1 1194 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢 prefix (𝑁 − 2)) ∈ 𝐹) | |
6 | simpr2 1195 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)) | |
7 | 5, 6 | opelxpd 5670 | . . . 4 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
8 | 4, 7 | syl6bi 252 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)))) |
9 | 8 | imp 407 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑢 ∈ (𝑋𝐶𝑁)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
10 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
11 | 9, 10 | fmptd 7059 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3406 〈cop 4591 ↦ cmpt 5187 × cxp 5630 ⟶wf 6490 ‘cfv 6494 (class class class)co 7354 ∈ cmpo 7356 1c1 11049 − cmin 11382 2c2 12205 3c3 12206 ℤ≥cuz 12760 prefix cpfx 14555 Vtxcvtx 27845 USGraphcusgr 27998 NeighbVtx cnbgr 28178 ClWWalksN cclwwlkn 28866 ClWWalksNOncclwwlknon 28929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-1st 7918 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-1o 8409 df-2o 8410 df-oadd 8413 df-er 8645 df-map 8764 df-en 8881 df-dom 8882 df-sdom 8883 df-fin 8884 df-dju 9834 df-card 9872 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-nn 12151 df-2 12213 df-3 12214 df-n0 12411 df-xnn0 12483 df-z 12497 df-uz 12761 df-fz 13422 df-fzo 13565 df-hash 14228 df-word 14400 df-lsw 14448 df-substr 14526 df-pfx 14556 df-edg 27897 df-upgr 27931 df-umgr 27932 df-usgr 28000 df-nbgr 28179 df-wwlks 28673 df-wwlksn 28674 df-clwwlk 28824 df-clwwlkn 28867 df-clwwlknon 28930 |
This theorem is referenced by: numclwwlk1lem2f1 29199 numclwwlk1lem2fo 29200 |
Copyright terms: Public domain | W3C validator |