| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2f | Structured version Visualization version GIF version | ||
| Description: 𝑇 is a function, mapping a double loop of length 𝑁 on vertex 𝑋 to the ordered pair of the first loop and the successor of 𝑋 in the second loop, which must be a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
| Ref | Expression |
|---|---|
| extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| Ref | Expression |
|---|---|
| numclwwlk1lem2f | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 3 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
| 4 | 1, 2, 3 | extwwlkfabel 30282 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) ↔ (𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)))) |
| 5 | simpr1 1195 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢 prefix (𝑁 − 2)) ∈ 𝐹) | |
| 6 | simpr2 1196 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)) | |
| 7 | 5, 6 | opelxpd 5677 | . . . 4 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 8 | 4, 7 | biimtrdi 253 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)))) |
| 9 | 8 | imp 406 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑢 ∈ (𝑋𝐶𝑁)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 10 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
| 11 | 9, 10 | fmptd 7086 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1c1 11069 − cmin 11405 2c2 12241 3c3 12242 ℤ≥cuz 12793 prefix cpfx 14635 Vtxcvtx 28923 USGraphcusgr 29076 NeighbVtx cnbgr 29259 ClWWalksN cclwwlkn 29953 ClWWalksNOncclwwlknon 30016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-lsw 14528 df-substr 14606 df-pfx 14636 df-edg 28975 df-upgr 29009 df-umgr 29010 df-usgr 29078 df-nbgr 29260 df-wwlks 29760 df-wwlksn 29761 df-clwwlk 29911 df-clwwlkn 29954 df-clwwlknon 30017 |
| This theorem is referenced by: numclwwlk1lem2f1 30286 numclwwlk1lem2fo 30287 |
| Copyright terms: Public domain | W3C validator |