MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fo Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fo 30224
Description: 𝑇 is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 13-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
numclwwlk.t 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fo ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑒,𝐢   𝑒,𝐹   𝑒,𝐺,𝑀   𝑒,𝑁   𝑒,𝑉   𝑒,𝑋   𝑒,𝑇
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝑇(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fo
Dummy variables 𝑖 π‘Ž 𝑝 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 extwwlkfab.c . . 3 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
4 numclwwlk.t . . 3 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 30221 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)⟢(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
6 elxp 5700 . . . . 5 (𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ↔ βˆƒπ‘Žβˆƒπ‘(𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))))
71, 2, 3numclwwlk1lem2foa 30220 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
87com12 32 . . . . . . . . . 10 ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
98adantl 480 . . . . . . . . 9 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
109imp 405 . . . . . . . 8 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁))
11 simpl 481 . . . . . . . . 9 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁))
12 fveq2 6894 . . . . . . . . . . 11 (π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) β†’ (π‘‡β€˜π‘₯) = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)))
1312eqeq2d 2736 . . . . . . . . . 10 (π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) β†’ (𝑝 = (π‘‡β€˜π‘₯) ↔ 𝑝 = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©))))
141, 2, 3, 4numclwwlk1lem2fv 30222 . . . . . . . . . . . 12 (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
1514adantr 479 . . . . . . . . . . 11 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
1615eqeq2d 2736 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ (𝑝 = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) ↔ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
1713, 16sylan9bbr 509 . . . . . . . . 9 (((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) ∧ π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) β†’ (𝑝 = (π‘‡β€˜π‘₯) ↔ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
18 simprll 777 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ 𝑝 = βŸ¨π‘Ž, π‘βŸ©)
191nbgrisvtx 29210 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ 𝑏 ∈ 𝑉)
203eleq2i 2817 . . . . . . . . . . . . . . . . . . . 20 (π‘Ž ∈ 𝐹 ↔ π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
21 uz3m2nn 12905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
2221nnne0d 12292 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) β‰  0)
23223ad2ant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) β‰  0)
24 eqid 2725 . . . . . . . . . . . . . . . . . . . . . 22 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
251, 24clwwlknonel 29961 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 βˆ’ 2) β‰  0 β†’ (π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
2720, 26bitrid 282 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
28 df-3an 1086 . . . . . . . . . . . . . . . . . . 19 (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋) ↔ (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋))
2927, 28bitrdi 286 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 ↔ (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋)))
30 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ π‘Ž ∈ Word 𝑉)
31 s1cl 14584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑋 ∈ 𝑉 β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3231adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3332adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3433adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
35 s1cl 14584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ 𝑉 β†’ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉)
3635adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉)
37 ccatass 14570 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ Word 𝑉 ∧ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) = (π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)))
3837oveq1d 7432 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ž ∈ Word 𝑉 ∧ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)) = ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)))
3930, 34, 36, 38syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)) = ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)))
40 ccatcl 14556 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉)
4133, 35, 40syl2an 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉)
42 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2))
4342eqcomd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
4443adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
4544adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
46 pfxccatid 14723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ž ∈ Word 𝑉 ∧ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉 ∧ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž)) β†’ ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)) = π‘Ž)
4730, 41, 45, 46syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)) = π‘Ž)
4839, 47eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ π‘Ž = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)))
49 1e2m1 12369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 = (2 βˆ’ 1)
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 1 = (2 βˆ’ 1))
5150oveq2d 7433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 1) = (𝑁 βˆ’ (2 βˆ’ 1)))
52 eluzelcn 12864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„‚)
53 2cnd 12320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 2 ∈ β„‚)
54 1cnd 11239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 1 ∈ β„‚)
5552, 53, 54subsubd 11629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ (2 βˆ’ 1)) = ((𝑁 βˆ’ 2) + 1))
5651, 55eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5756adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5857adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5958adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
6059fveq2d 6898 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1)) = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)))
61 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)))
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
6362anim1i 613 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))
64 ccatw2s1p2 14619 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)) = 𝑏)
6561, 63, 64syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)) = 𝑏)
6660, 65eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ 𝑏 = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1)))
6748, 66opeq12d 4882 . . . . . . . . . . . . . . . . . . . . . . 23 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
6867exp31 418 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
69683ad2antl1 1182 . . . . . . . . . . . . . . . . . . . . 21 (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7069adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7170com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
72713adant1 1127 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7329, 72sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7473com23 86 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ (π‘Ž ∈ 𝐹 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7519, 74syl5 34 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ (π‘Ž ∈ 𝐹 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7675com13 88 . . . . . . . . . . . . . 14 (π‘Ž ∈ 𝐹 β†’ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7776imp 405 . . . . . . . . . . . . 13 ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
7877adantl 480 . . . . . . . . . . . 12 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
7978imp 405 . . . . . . . . . . 11 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8079adantl 480 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8118, 80eqtrd 2765 . . . . . . . . 9 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8211, 17, 81rspcedvd 3609 . . . . . . . 8 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8310, 82mpancom 686 . . . . . . 7 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8483ex 411 . . . . . 6 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
8584exlimivv 1927 . . . . 5 (βˆƒπ‘Žβˆƒπ‘(𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
866, 85sylbi 216 . . . 4 (𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
8786impcom 406 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8887ralrimiva 3136 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆ€π‘ ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
89 dffo3 7109 . 2 (𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐢𝑁)⟢(𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ∧ βˆ€π‘ ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
905, 88, 89sylanbrc 581 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  {cpr 4631  βŸ¨cop 4635   ↦ cmpt 5231   Γ— cxp 5675  βŸΆwf 6543  β€“ontoβ†’wfo 6545  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  0cc0 11138  1c1 11139   + caddc 11141   βˆ’ cmin 11474  2c2 12297  3c3 12298  β„€β‰₯cuz 12852  ..^cfzo 13659  β™―chash 14321  Word cword 14496  lastSclsw 14544   ++ cconcat 14552  βŸ¨β€œcs1 14577   prefix cpfx 14652  Vtxcvtx 28865  Edgcedg 28916  USGraphcusgr 29018   NeighbVtx cnbgr 29201  ClWWalksNOncclwwlknon 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-edg 28917  df-upgr 28951  df-umgr 28952  df-usgr 29020  df-nbgr 29202  df-wwlks 29697  df-wwlksn 29698  df-clwwlk 29848  df-clwwlkn 29891  df-clwwlknon 29954
This theorem is referenced by:  numclwwlk1lem2f1o  30225
  Copyright terms: Public domain W3C validator