MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fo Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fo 28140
Description: 𝑇 is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 13-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fo ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fo
Dummy variables 𝑖 𝑎 𝑝 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 28137 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
6 elxp 5581 . . . . 5 (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))))
71, 2, 3numclwwlk1lem2foa 28136 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
87com12 32 . . . . . . . . . 10 ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
98adantl 484 . . . . . . . . 9 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
109imp 409 . . . . . . . 8 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁))
11 simpl 485 . . . . . . . . 9 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁))
12 fveq2 6673 . . . . . . . . . . 11 (𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) → (𝑇𝑥) = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)))
1312eqeq2d 2835 . . . . . . . . . 10 (𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) → (𝑝 = (𝑇𝑥) ↔ 𝑝 = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩))))
141, 2, 3, 4numclwwlk1lem2fv 28138 . . . . . . . . . . . 12 (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) → (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
1514adantr 483 . . . . . . . . . . 11 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
1615eqeq2d 2835 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → (𝑝 = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) ↔ 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
1713, 16sylan9bbr 513 . . . . . . . . 9 (((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) ∧ 𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) → (𝑝 = (𝑇𝑥) ↔ 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
18 simprll 777 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → 𝑝 = ⟨𝑎, 𝑏⟩)
191nbgrisvtx 27126 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → 𝑏𝑉)
203eleq2i 2907 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐹𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
21 uz3m2nn 12294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2221nnne0d 11690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
23223ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ≠ 0)
24 eqid 2824 . . . . . . . . . . . . . . . . . . . . . 22 (Edg‘𝐺) = (Edg‘𝐺)
251, 24clwwlknonel 27877 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 2) ≠ 0 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
2720, 26syl5bb 285 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
28 df-3an 1085 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋) ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋))
2927, 28syl6bb 289 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋)))
30 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑎 ∈ Word 𝑉)
31 s1cl 13959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
3231adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨“𝑋”⟩ ∈ Word 𝑉)
3332adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ⟨“𝑋”⟩ ∈ Word 𝑉)
3433adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨“𝑋”⟩ ∈ Word 𝑉)
35 s1cl 13959 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏𝑉 → ⟨“𝑏”⟩ ∈ Word 𝑉)
3635adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨“𝑏”⟩ ∈ Word 𝑉)
37 ccatass 13945 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) = (𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)))
3837oveq1d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)) = ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)))
3930, 34, 36, 38syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)) = ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)))
40 ccatcl 13929 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉)
4133, 35, 40syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉)
42 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
4342eqcomd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑎))
4443adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (♯‘𝑎))
4544adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑁 − 2) = (♯‘𝑎))
46 pfxccatid 14106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑎)) → ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)) = 𝑎)
4730, 41, 45, 46syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)) = 𝑎)
4839, 47eqtr2d 2860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑎 = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)))
49 1e2m1 11767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 = (2 − 1)
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 1 = (2 − 1))
5150oveq2d 7175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = (𝑁 − (2 − 1)))
52 eluzelcn 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
53 2cnd 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
54 1cnd 10639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
5552, 53, 54subsubd 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
5651, 55eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5756adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5857adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5958adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑁 − 1) = ((𝑁 − 2) + 1))
6059fveq2d 6677 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1)) = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)))
61 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)))
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
6362anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑋𝑉𝑏𝑉))
64 ccatw2s1p2 14000 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑏𝑉)) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)) = 𝑏)
6561, 63, 64syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)) = 𝑏)
6660, 65eqtr2d 2860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑏 = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1)))
6748, 66opeq12d 4814 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
6867exp31 422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
69683ad2antl1 1181 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7069adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7170com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
72713adant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7329, 72sylbid 242 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7473com23 86 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → (𝑎𝐹 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7519, 74syl5 34 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → (𝑎𝐹 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7675com13 88 . . . . . . . . . . . . . 14 (𝑎𝐹 → (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7776imp 409 . . . . . . . . . . . . 13 ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
7877adantl 484 . . . . . . . . . . . 12 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
7978imp 409 . . . . . . . . . . 11 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8079adantl 484 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8118, 80eqtrd 2859 . . . . . . . . 9 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8211, 17, 81rspcedvd 3629 . . . . . . . 8 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8310, 82mpancom 686 . . . . . . 7 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8483ex 415 . . . . . 6 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
8584exlimivv 1932 . . . . 5 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
866, 85sylbi 219 . . . 4 (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
8786impcom 410 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8887ralrimiva 3185 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
89 dffo3 6871 . 2 (𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
905, 88, 89sylanbrc 585 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wne 3019  wral 3141  wrex 3142  {crab 3145  {cpr 4572  cop 4576  cmpt 5149   × cxp 5556  wf 6354  ontowfo 6356  cfv 6358  (class class class)co 7159  cmpo 7161  0cc0 10540  1c1 10541   + caddc 10543  cmin 10873  2c2 11695  3c3 11696  cuz 12246  ..^cfzo 13036  chash 13693  Word cword 13864  lastSclsw 13917   ++ cconcat 13925  ⟨“cs1 13952   prefix cpfx 14035  Vtxcvtx 26784  Edgcedg 26835  USGraphcusgr 26937   NeighbVtx cnbgr 27117  ClWWalksNOncclwwlknon 27869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-edg 26836  df-upgr 26870  df-umgr 26871  df-usgr 26939  df-nbgr 27118  df-wwlks 27611  df-wwlksn 27612  df-clwwlk 27763  df-clwwlkn 27806  df-clwwlknon 27870
This theorem is referenced by:  numclwwlk1lem2f1o  28141
  Copyright terms: Public domain W3C validator