MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fo Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fo 28722
Description: 𝑇 is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 13-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
numclwwlk.t 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fo ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑢,𝐶   𝑢,𝐹   𝑢,𝐺,𝑤   𝑢,𝑁   𝑢,𝑉   𝑢,𝑋   𝑢,𝑇
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fo
Dummy variables 𝑖 𝑎 𝑝 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
2 extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
4 numclwwlk.t . . 3 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 28719 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)))
6 elxp 5612 . . . . 5 (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ ∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))))
71, 2, 3numclwwlk1lem2foa 28718 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
87com12 32 . . . . . . . . . 10 ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
98adantl 482 . . . . . . . . 9 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁)))
109imp 407 . . . . . . . 8 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁))
11 simpl 483 . . . . . . . . 9 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁))
12 fveq2 6774 . . . . . . . . . . 11 (𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) → (𝑇𝑥) = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)))
1312eqeq2d 2749 . . . . . . . . . 10 (𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) → (𝑝 = (𝑇𝑥) ↔ 𝑝 = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩))))
141, 2, 3, 4numclwwlk1lem2fv 28720 . . . . . . . . . . . 12 (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) → (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
1514adantr 481 . . . . . . . . . . 11 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
1615eqeq2d 2749 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → (𝑝 = (𝑇‘((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) ↔ 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
1713, 16sylan9bbr 511 . . . . . . . . 9 (((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) ∧ 𝑥 = ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)) → (𝑝 = (𝑇𝑥) ↔ 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
18 simprll 776 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → 𝑝 = ⟨𝑎, 𝑏⟩)
191nbgrisvtx 27708 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → 𝑏𝑉)
203eleq2i 2830 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐹𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
21 uz3m2nn 12631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2221nnne0d 12023 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
23223ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ≠ 0)
24 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Edg‘𝐺) = (Edg‘𝐺)
251, 24clwwlknonel 28459 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 2) ≠ 0 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
2720, 26syl5bb 283 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋)))
28 df-3an 1088 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋) ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋))
2927, 28bitrdi 287 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋)))
30 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑎 ∈ Word 𝑉)
31 s1cl 14307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
3231adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨“𝑋”⟩ ∈ Word 𝑉)
3332adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ⟨“𝑋”⟩ ∈ Word 𝑉)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨“𝑋”⟩ ∈ Word 𝑉)
35 s1cl 14307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏𝑉 → ⟨“𝑏”⟩ ∈ Word 𝑉)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨“𝑏”⟩ ∈ Word 𝑉)
37 ccatass 14293 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → ((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) = (𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)))
3837oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)) = ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)))
3930, 34, 36, 38syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)) = ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)))
40 ccatcl 14277 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨“𝑋”⟩ ∈ Word 𝑉 ∧ ⟨“𝑏”⟩ ∈ Word 𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉)
4133, 35, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉)
42 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2))
4342eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑎))
4443adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) = (♯‘𝑎))
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑁 − 2) = (♯‘𝑎))
46 pfxccatid 14454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑎)) → ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)) = 𝑎)
4730, 41, 45, 46syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ((𝑎 ++ (⟨“𝑋”⟩ ++ ⟨“𝑏”⟩)) prefix (𝑁 − 2)) = 𝑎)
4839, 47eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑎 = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)))
49 1e2m1 12100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 = (2 − 1)
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 1 = (2 − 1))
5150oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = (𝑁 − (2 − 1)))
52 eluzelcn 12594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
53 2cnd 12051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
54 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
5552, 53, 54subsubd 11360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
5651, 55eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5756adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5857adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 1) = ((𝑁 − 2) + 1))
5958adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑁 − 1) = ((𝑁 − 2) + 1))
6059fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1)) = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)))
61 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)))
62 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
6362anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (𝑋𝑉𝑏𝑉))
64 ccatw2s1p2 14348 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑏𝑉)) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)) = 𝑏)
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘((𝑁 − 2) + 1)) = 𝑏)
6660, 65eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → 𝑏 = (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1)))
6748, 66opeq12d 4812 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ 𝑏𝑉) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
6867exp31 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
69683ad2antl1 1184 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7069adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7170com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
72713adant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7329, 72sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑎𝐹 → (𝑏𝑉 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7473com23 86 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏𝑉 → (𝑎𝐹 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7519, 74syl5 34 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → (𝑎𝐹 → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7675com13 88 . . . . . . . . . . . . . 14 (𝑎𝐹 → (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)))
7776imp 407 . . . . . . . . . . . . 13 ((𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
7877adantl 482 . . . . . . . . . . . 12 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩))
7978imp 407 . . . . . . . . . . 11 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8079adantl 482 . . . . . . . . . 10 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ⟨𝑎, 𝑏⟩ = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8118, 80eqtrd 2778 . . . . . . . . 9 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → 𝑝 = ⟨(((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) prefix (𝑁 − 2)), (((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩)‘(𝑁 − 1))⟩)
8211, 17, 81rspcedvd 3563 . . . . . . . 8 ((((𝑎 ++ ⟨“𝑋”⟩) ++ ⟨“𝑏”⟩) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8310, 82mpancom 685 . . . . . . 7 (((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8483ex 413 . . . . . 6 ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
8584exlimivv 1935 . . . . 5 (∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝐹𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
866, 85sylbi 216 . . . 4 (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
8786impcom 408 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
8887ralrimiva 3103 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∀𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥))
89 dffo3 6978 . 2 (𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇𝑥)))
905, 88, 89sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  {cpr 4563  cop 4567  cmpt 5157   × cxp 5587  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  2c2 12028  3c3 12029  cuz 12582  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519   NeighbVtx cnbgr 27699  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-edg 27418  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-nbgr 27700  df-wwlks 28195  df-wwlksn 28196  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  numclwwlk1lem2f1o  28723
  Copyright terms: Public domain W3C validator