| Step | Hyp | Ref
| Expression |
| 1 | | extwwlkfab.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | extwwlkfab.c |
. . 3
⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| 3 | | extwwlkfab.f |
. . 3
⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
| 4 | | numclwwlk.t |
. . 3
⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
| 5 | 1, 2, 3, 4 | numclwwlk1lem2f 30301 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
| 6 | | elxp 5688 |
. . . . 5
⊢ (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ ∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)))) |
| 7 | 1, 2, 3 | numclwwlk1lem2foa 30300 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁))) |
| 8 | 7 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑎 ++
〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁))) |
| 9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((𝑎 ++
〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁))) |
| 10 | 9 | imp 406 |
. . . . . . . 8
⊢ (((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ((𝑎 ++
〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁)) |
| 11 | | simpl 482 |
. . . . . . . . 9
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ ((𝑎 ++
〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁)) |
| 12 | | fveq2 6885 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) → (𝑇‘𝑥) = (𝑇‘((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉))) |
| 13 | 12 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) → (𝑝 = (𝑇‘𝑥) ↔ 𝑝 = (𝑇‘((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)))) |
| 14 | 1, 2, 3, 4 | numclwwlk1lem2fv 30302 |
. . . . . . . . . . . 12
⊢ (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) → (𝑇‘((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)) = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ (𝑇‘((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)) = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉) |
| 16 | 15 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ (𝑝 = (𝑇‘((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)) ↔ 𝑝 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉)) |
| 17 | 13, 16 | sylan9bbr 510 |
. . . . . . . . 9
⊢
(((((𝑎 ++
〈“𝑋”〉) ++ 〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
∧ 𝑥 = ((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)) → (𝑝 = (𝑇‘𝑥) ↔ 𝑝 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉)) |
| 18 | | simprll 778 |
. . . . . . . . . 10
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ 𝑝 = 〈𝑎, 𝑏〉) |
| 19 | 1 | nbgrisvtx 29285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → 𝑏 ∈ 𝑉) |
| 20 | 3 | eleq2i 2825 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ 𝐹 ↔ 𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
| 21 | | uz3m2nn 12914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) |
| 22 | 21 | nnne0d 12297 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 2) ≠ 0) |
| 23 | 22 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑁 − 2) ≠
0) |
| 24 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 25 | 1, 24 | clwwlknonel 30041 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 2) ≠ 0 → (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋))) |
| 26 | 23, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑎 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋))) |
| 27 | 20, 26 | bitrid 283 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑎 ∈ 𝐹 ↔ ((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋))) |
| 28 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2) ∧ (𝑎‘0) = 𝑋) ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋)) |
| 29 | 27, 28 | bitrdi 287 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑎 ∈ 𝐹 ↔ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋))) |
| 30 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ Word 𝑉) |
| 31 | | s1cl 14621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 〈“𝑋”〉 ∈ Word 𝑉) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 〈“𝑋”〉 ∈ Word 𝑉) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 〈“𝑋”〉 ∈ Word 𝑉) |
| 35 | | s1cl 14621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑏 ∈ 𝑉 → 〈“𝑏”〉 ∈ Word 𝑉) |
| 36 | 35 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 〈“𝑏”〉 ∈ Word 𝑉) |
| 37 | | ccatass 14607 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ Word 𝑉 ∧ 〈“𝑋”〉 ∈ Word 𝑉 ∧ 〈“𝑏”〉 ∈ Word 𝑉) → ((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) = (𝑎 ++ (〈“𝑋”〉 ++
〈“𝑏”〉))) |
| 38 | 37 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ Word 𝑉 ∧ 〈“𝑋”〉 ∈ Word 𝑉 ∧ 〈“𝑏”〉 ∈ Word 𝑉) → (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)) = ((𝑎 ++ (〈“𝑋”〉 ++
〈“𝑏”〉)) prefix (𝑁 − 2))) |
| 39 | 30, 34, 36, 38 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)) = ((𝑎 ++ (〈“𝑋”〉 ++
〈“𝑏”〉)) prefix (𝑁 − 2))) |
| 40 | | ccatcl 14593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((〈“𝑋”〉 ∈ Word 𝑉 ∧ 〈“𝑏”〉 ∈ Word 𝑉) → (〈“𝑋”〉 ++ 〈“𝑏”〉) ∈ Word 𝑉) |
| 41 | 33, 35, 40 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (〈“𝑋”〉 ++
〈“𝑏”〉) ∈ Word 𝑉) |
| 42 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (♯‘𝑎) = (𝑁 − 2)) |
| 43 | 42 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → (𝑁 − 2) = (♯‘𝑎)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (𝑁 − 2) =
(♯‘𝑎)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (𝑁 − 2) = (♯‘𝑎)) |
| 46 | | pfxccatid 14760 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑏”〉) ∈ Word 𝑉 ∧ (𝑁 − 2) = (♯‘𝑎)) → ((𝑎 ++ (〈“𝑋”〉 ++ 〈“𝑏”〉)) prefix (𝑁 − 2)) = 𝑎) |
| 47 | 30, 41, 45, 46 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → ((𝑎 ++ (〈“𝑋”〉 ++ 〈“𝑏”〉)) prefix (𝑁 − 2)) = 𝑎) |
| 48 | 39, 47 | eqtr2d 2770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 𝑎 = (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2))) |
| 49 | | 1e2m1 12374 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 = (2
− 1) |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 = (2 − 1)) |
| 51 | 50 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 1) = (𝑁 − (2 − 1))) |
| 52 | | eluzelcn 12871 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℂ) |
| 53 | | 2cnd 12325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈ ℂ) |
| 54 | | 1cnd 11237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈ ℂ) |
| 55 | 52, 53, 54 | subsubd 11629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − (2 − 1)) = ((𝑁 − 2) +
1)) |
| 56 | 51, 55 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 1) = ((𝑁 − 2) + 1)) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑁 − 1) =
((𝑁 − 2) +
1)) |
| 58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ (𝑁 − 1) =
((𝑁 − 2) +
1)) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (𝑁 − 1) = ((𝑁 − 2) + 1)) |
| 60 | 59 | fveq2d 6889 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 − 1)) = (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘((𝑁 − 2) + 1))) |
| 61 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2))) |
| 62 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 𝑋 ∈ 𝑉) |
| 63 | 62 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 64 | | ccatw2s1p2 14656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘((𝑁 − 2) + 1)) = 𝑏) |
| 65 | 61, 63, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘((𝑁 − 2) + 1)) = 𝑏) |
| 66 | 60, 65 | eqtr2d 2770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 𝑏 = (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 − 1))) |
| 67 | 48, 66 | opeq12d 4861 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
∧ 𝑏 ∈ 𝑉) → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉) |
| 68 | 67 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ Word 𝑉 ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 69 | 68 | 3ad2antl1 1185 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) → ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑎 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑎) − 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 71 | 70 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((((𝑎 ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘𝑎)
− 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 72 | 71 | 3adant1 1130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ((((𝑎 ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘𝑎)
− 1)){(𝑎‘𝑖), (𝑎‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑎), (𝑎‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑎) = (𝑁 − 2)) ∧ (𝑎‘0) = 𝑋) → (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 73 | 29, 72 | sylbid 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑎 ∈ 𝐹 → (𝑏 ∈ 𝑉 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 74 | 73 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑏 ∈ 𝑉 → (𝑎 ∈ 𝐹 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 75 | 19, 74 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → (𝑎 ∈ 𝐹 → 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉)‘(𝑁 − 1))〉))) |
| 76 | 75 | com13 88 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝐹 → (𝑏 ∈ (𝐺 NeighbVtx 𝑋) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉))) |
| 77 | 76 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉)) |
| 78 | 77 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉)) |
| 79 | 78 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉) |
| 80 | 79 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ 〈𝑎, 𝑏〉 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉) |
| 81 | 18, 80 | eqtrd 2769 |
. . . . . . . . 9
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ 𝑝 = 〈(((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) prefix (𝑁 − 2)), (((𝑎 ++ 〈“𝑋”〉) ++ 〈“𝑏”〉)‘(𝑁 −
1))〉) |
| 82 | 11, 17, 81 | rspcedvd 3607 |
. . . . . . . 8
⊢ ((((𝑎 ++ 〈“𝑋”〉) ++
〈“𝑏”〉) ∈ (𝑋𝐶𝑁) ∧ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))))
→ ∃𝑥 ∈
(𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥)) |
| 83 | 10, 82 | mpancom 688 |
. . . . . . 7
⊢ (((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)))
→ ∃𝑥 ∈
(𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥)) |
| 84 | 83 | ex 412 |
. . . . . 6
⊢ ((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∃𝑥 ∈
(𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥))) |
| 85 | 84 | exlimivv 1931 |
. . . . 5
⊢
(∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∃𝑥 ∈
(𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥))) |
| 86 | 6, 85 | sylbi 217 |
. . . 4
⊢ (𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)) → ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∃𝑥 ∈
(𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥))) |
| 87 | 86 | impcom 407 |
. . 3
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
∧ 𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) → ∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥)) |
| 88 | 87 | ralrimiva 3133 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ ∀𝑝 ∈
(𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥)) |
| 89 | | dffo3 7101 |
. 2
⊢ (𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋)) ∧ ∀𝑝 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))∃𝑥 ∈ (𝑋𝐶𝑁)𝑝 = (𝑇‘𝑥))) |
| 90 | 5, 88, 89 | sylanbrc 583 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑇:(𝑋𝐶𝑁)–onto→(𝐹 × (𝐺 NeighbVtx 𝑋))) |