MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk1lem2fo Structured version   Visualization version   GIF version

Theorem numclwwlk1lem2fo 29600
Description: 𝑇 is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 13-Feb-2022.) (Revised by AV, 31-Oct-2022.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtxβ€˜πΊ)
extwwlkfab.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
extwwlkfab.f 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
numclwwlk.t 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
Assertion
Ref Expression
numclwwlk1lem2fo ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑛,𝑋,𝑣,𝑀   𝑀,𝐹   𝑒,𝐢   𝑒,𝐹   𝑒,𝐺,𝑀   𝑒,𝑁   𝑒,𝑉   𝑒,𝑋   𝑒,𝑇
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝑇(𝑀,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem numclwwlk1lem2fo
Dummy variables 𝑖 π‘Ž 𝑝 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 extwwlkfab.c . . 3 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
3 extwwlkfab.f . . 3 𝐹 = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
4 numclwwlk.t . . 3 𝑇 = (𝑒 ∈ (𝑋𝐢𝑁) ↦ ⟨(𝑒 prefix (𝑁 βˆ’ 2)), (π‘’β€˜(𝑁 βˆ’ 1))⟩)
51, 2, 3, 4numclwwlk1lem2f 29597 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)⟢(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
6 elxp 5698 . . . . 5 (𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ↔ βˆƒπ‘Žβˆƒπ‘(𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))))
71, 2, 3numclwwlk1lem2foa 29596 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
87com12 32 . . . . . . . . . 10 ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
98adantl 482 . . . . . . . . 9 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁)))
109imp 407 . . . . . . . 8 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁))
11 simpl 483 . . . . . . . . 9 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁))
12 fveq2 6888 . . . . . . . . . . 11 (π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) β†’ (π‘‡β€˜π‘₯) = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)))
1312eqeq2d 2743 . . . . . . . . . 10 (π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) β†’ (𝑝 = (π‘‡β€˜π‘₯) ↔ 𝑝 = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©))))
141, 2, 3, 4numclwwlk1lem2fv 29598 . . . . . . . . . . . 12 (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) β†’ (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
1514adantr 481 . . . . . . . . . . 11 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
1615eqeq2d 2743 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ (𝑝 = (π‘‡β€˜((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) ↔ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
1713, 16sylan9bbr 511 . . . . . . . . 9 (((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) ∧ π‘₯ = ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)) β†’ (𝑝 = (π‘‡β€˜π‘₯) ↔ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
18 simprll 777 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ 𝑝 = βŸ¨π‘Ž, π‘βŸ©)
191nbgrisvtx 28587 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ 𝑏 ∈ 𝑉)
203eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (π‘Ž ∈ 𝐹 ↔ π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
21 uz3m2nn 12871 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
2221nnne0d 12258 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) β‰  0)
23223ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) β‰  0)
24 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
251, 24clwwlknonel 29337 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 βˆ’ 2) β‰  0 β†’ (π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
2720, 26bitrid 282 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 ↔ ((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋)))
28 df-3an 1089 . . . . . . . . . . . . . . . . . . 19 (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2) ∧ (π‘Žβ€˜0) = 𝑋) ↔ (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋))
2927, 28bitrdi 286 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 ↔ (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋)))
30 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ π‘Ž ∈ Word 𝑉)
31 s1cl 14548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑋 ∈ 𝑉 β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3231adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3332adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
35 s1cl 14548 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ 𝑉 β†’ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉)
37 ccatass 14534 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ Word 𝑉 ∧ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ ((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) = (π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)))
3837oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ž ∈ Word 𝑉 ∧ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)) = ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)))
3930, 34, 36, 38syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)) = ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)))
40 ccatcl 14520 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉 ∧ βŸ¨β€œπ‘β€βŸ© ∈ Word 𝑉) β†’ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉)
4133, 35, 40syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉)
42 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2))
4342eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
4443adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž))
46 pfxccatid 14687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ž ∈ Word 𝑉 ∧ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©) ∈ Word 𝑉 ∧ (𝑁 βˆ’ 2) = (β™―β€˜π‘Ž)) β†’ ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)) = π‘Ž)
4730, 41, 45, 46syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ ((π‘Ž ++ (βŸ¨β€œπ‘‹β€βŸ© ++ βŸ¨β€œπ‘β€βŸ©)) prefix (𝑁 βˆ’ 2)) = π‘Ž)
4839, 47eqtr2d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ π‘Ž = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)))
49 1e2m1 12335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 = (2 βˆ’ 1)
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 1 = (2 βˆ’ 1))
5150oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 1) = (𝑁 βˆ’ (2 βˆ’ 1)))
52 eluzelcn 12830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„‚)
53 2cnd 12286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 2 ∈ β„‚)
54 1cnd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 1 ∈ β„‚)
5552, 53, 54subsubd 11595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ (2 βˆ’ 1)) = ((𝑁 βˆ’ 2) + 1))
5651, 55eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5756adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5857adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
5958adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑁 βˆ’ 1) = ((𝑁 βˆ’ 2) + 1))
6059fveq2d 6892 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1)) = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)))
61 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)))
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
6362anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))
64 ccatw2s1p2 14583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)) = 𝑏)
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜((𝑁 βˆ’ 2) + 1)) = 𝑏)
6660, 65eqtr2d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ 𝑏 = (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1)))
6748, 66opeq12d 4880 . . . . . . . . . . . . . . . . . . . . . . 23 ((((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ 𝑏 ∈ 𝑉) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
6867exp31 420 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘Ž ∈ Word 𝑉 ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
69683ad2antl1 1185 . . . . . . . . . . . . . . . . . . . . 21 (((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7069adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7170com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
72713adant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((((π‘Ž ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Ž) βˆ’ 1)){(π‘Žβ€˜π‘–), (π‘Žβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜π‘Ž), (π‘Žβ€˜0)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘Ž) = (𝑁 βˆ’ 2)) ∧ (π‘Žβ€˜0) = 𝑋) β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7329, 72sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Ž ∈ 𝐹 β†’ (𝑏 ∈ 𝑉 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7473com23 86 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ 𝑉 β†’ (π‘Ž ∈ 𝐹 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7519, 74syl5 34 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ (π‘Ž ∈ 𝐹 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7675com13 88 . . . . . . . . . . . . . 14 (π‘Ž ∈ 𝐹 β†’ (𝑏 ∈ (𝐺 NeighbVtx 𝑋) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)))
7776imp 407 . . . . . . . . . . . . 13 ((π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
7877adantl 482 . . . . . . . . . . . 12 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩))
7978imp 407 . . . . . . . . . . 11 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8079adantl 482 . . . . . . . . . 10 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8118, 80eqtrd 2772 . . . . . . . . 9 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ 𝑝 = ⟨(((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) prefix (𝑁 βˆ’ 2)), (((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©)β€˜(𝑁 βˆ’ 1))⟩)
8211, 17, 81rspcedvd 3614 . . . . . . . 8 ((((π‘Ž ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘β€βŸ©) ∈ (𝑋𝐢𝑁) ∧ ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8310, 82mpancom 686 . . . . . . 7 (((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) ∧ (𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8483ex 413 . . . . . 6 ((𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
8584exlimivv 1935 . . . . 5 (βˆƒπ‘Žβˆƒπ‘(𝑝 = βŸ¨π‘Ž, π‘βŸ© ∧ (π‘Ž ∈ 𝐹 ∧ 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
866, 85sylbi 216 . . . 4 (𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋)) β†’ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
8786impcom 408 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ 𝑝 ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))) β†’ βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
8887ralrimiva 3146 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ βˆ€π‘ ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯))
89 dffo3 7100 . 2 (𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ↔ (𝑇:(𝑋𝐢𝑁)⟢(𝐹 Γ— (𝐺 NeighbVtx 𝑋)) ∧ βˆ€π‘ ∈ (𝐹 Γ— (𝐺 NeighbVtx 𝑋))βˆƒπ‘₯ ∈ (𝑋𝐢𝑁)𝑝 = (π‘‡β€˜π‘₯)))
905, 88, 89sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑇:(𝑋𝐢𝑁)–ontoβ†’(𝐹 Γ— (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  {cpr 4629  βŸ¨cop 4633   ↦ cmpt 5230   Γ— cxp 5673  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  2c2 12263  3c3 12264  β„€β‰₯cuz 12818  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541   prefix cpfx 14616  Vtxcvtx 28245  Edgcedg 28296  USGraphcusgr 28398   NeighbVtx cnbgr 28578  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-upgr 28331  df-umgr 28332  df-usgr 28400  df-nbgr 28579  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  numclwwlk1lem2f1o  29601
  Copyright terms: Public domain W3C validator