Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zofldiv2ALTV Structured version   Visualization version   GIF version

Theorem zofldiv2ALTV 47587
Description: The floor of an odd number divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.)
Assertion
Ref Expression
zofldiv2ALTV (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))

Proof of Theorem zofldiv2ALTV
StepHypRef Expression
1 oddz 47556 . . . . 5 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
21zcnd 12721 . . . 4 (𝑁 ∈ Odd → 𝑁 ∈ ℂ)
3 npcan1 11686 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
43eqcomd 2741 . . . . . 6 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1))
54oveq1d 7446 . . . . 5 (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2))
6 peano2cnm 11573 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
7 1cnd 11254 . . . . . 6 (𝑁 ∈ ℂ → 1 ∈ ℂ)
8 2cnne0 12474 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
98a1i 11 . . . . . 6 (𝑁 ∈ ℂ → (2 ∈ ℂ ∧ 2 ≠ 0))
10 divdir 11945 . . . . . 6 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
116, 7, 9, 10syl3anc 1370 . . . . 5 (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
125, 11eqtrd 2775 . . . 4 (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
132, 12syl 17 . . 3 (𝑁 ∈ Odd → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
1413fveq2d 6911 . 2 (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2))))
15 halfge0 12481 . . . 4 0 ≤ (1 / 2)
16 halflt1 12482 . . . 4 (1 / 2) < 1
1715, 16pm3.2i 470 . . 3 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
18 oddm1div2z 47559 . . . 4 (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ)
19 halfre 12478 . . . 4 (1 / 2) ∈ ℝ
20 flbi2 13854 . . . 4 ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2118, 19, 20sylancl 586 . . 3 (𝑁 ∈ Odd → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2217, 21mpbiri 258 . 2 (𝑁 ∈ Odd → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2))
2314, 22eqtrd 2775 1 (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  cz 12611  cfl 13827   Odd codd 47550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fl 13829  df-odd 47552
This theorem is referenced by:  oddflALTV  47588
  Copyright terms: Public domain W3C validator