Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zofldiv2ALTV Structured version   Visualization version   GIF version

Theorem zofldiv2ALTV 45465
Description: The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.)
Assertion
Ref Expression
zofldiv2ALTV (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))

Proof of Theorem zofldiv2ALTV
StepHypRef Expression
1 oddz 45434 . . . . 5 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
21zcnd 12528 . . . 4 (𝑁 ∈ Odd → 𝑁 ∈ ℂ)
3 npcan1 11501 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
43eqcomd 2742 . . . . . 6 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1))
54oveq1d 7352 . . . . 5 (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2))
6 peano2cnm 11388 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
7 1cnd 11071 . . . . . 6 (𝑁 ∈ ℂ → 1 ∈ ℂ)
8 2cnne0 12284 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
98a1i 11 . . . . . 6 (𝑁 ∈ ℂ → (2 ∈ ℂ ∧ 2 ≠ 0))
10 divdir 11759 . . . . . 6 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
116, 7, 9, 10syl3anc 1370 . . . . 5 (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
125, 11eqtrd 2776 . . . 4 (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
132, 12syl 17 . . 3 (𝑁 ∈ Odd → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
1413fveq2d 6829 . 2 (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2))))
15 halfge0 12291 . . . 4 0 ≤ (1 / 2)
16 halflt1 12292 . . . 4 (1 / 2) < 1
1715, 16pm3.2i 471 . . 3 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
18 oddm1div2z 45437 . . . 4 (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ)
19 halfre 12288 . . . 4 (1 / 2) ∈ ℝ
20 flbi2 13638 . . . 4 ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2118, 19, 20sylancl 586 . . 3 (𝑁 ∈ Odd → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2217, 21mpbiri 257 . 2 (𝑁 ∈ Odd → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2))
2314, 22eqtrd 2776 1 (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   < clt 11110  cle 11111  cmin 11306   / cdiv 11733  2c2 12129  cz 12420  cfl 13611   Odd codd 45428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-fl 13613  df-odd 45430
This theorem is referenced by:  oddflALTV  45466
  Copyright terms: Public domain W3C validator