| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zofldiv2ALTV | Structured version Visualization version GIF version | ||
| Description: The floor of an odd number divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
| Ref | Expression |
|---|---|
| zofldiv2ALTV | ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddz 47619 | . . . . 5 ⊢ (𝑁 ∈ Odd → 𝑁 ∈ ℤ) | |
| 2 | 1 | zcnd 12581 | . . . 4 ⊢ (𝑁 ∈ Odd → 𝑁 ∈ ℂ) |
| 3 | npcan1 11545 | . . . . . . 7 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
| 4 | 3 | eqcomd 2735 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1)) |
| 5 | 4 | oveq1d 7364 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2)) |
| 6 | peano2cnm 11430 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
| 7 | 1cnd 11110 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 8 | 2cnne0 12333 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 10 | divdir 11804 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
| 12 | 5, 11 | eqtrd 2764 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
| 13 | 2, 12 | syl 17 | . . 3 ⊢ (𝑁 ∈ Odd → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
| 14 | 13 | fveq2d 6826 | . 2 ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
| 15 | halfge0 12340 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
| 16 | halflt1 12341 | . . . 4 ⊢ (1 / 2) < 1 | |
| 17 | 15, 16 | pm3.2i 470 | . . 3 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 18 | oddm1div2z 47622 | . . . 4 ⊢ (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ) | |
| 19 | halfre 12337 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 20 | flbi2 13721 | . . . 4 ⊢ ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 21 | 18, 19, 20 | sylancl 586 | . . 3 ⊢ (𝑁 ∈ Odd → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
| 22 | 17, 21 | mpbiri 258 | . 2 ⊢ (𝑁 ∈ Odd → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2)) |
| 23 | 14, 22 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 / cdiv 11777 2c2 12183 ℤcz 12471 ⌊cfl 13694 Odd codd 47613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fl 13696 df-odd 47615 |
| This theorem is referenced by: oddflALTV 47651 |
| Copyright terms: Public domain | W3C validator |