Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem2 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem2 47414
Description: Lemma 2 for bgoldbtbnd 47417. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbndlem2.s 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
Assertion
Ref Expression
bgoldbtbndlem2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem2
StepHypRef Expression
1 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
2 elfzoelz 13680 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℤ)
3 elfzoel2 13679 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ ℤ)
4 elfzom1b 13780 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) ↔ (𝐼 − 1) ∈ (0..^(𝐷 − 1))))
5 fzossrbm1 13709 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
65adantl 480 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
76sseld 3977 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐼 − 1) ∈ (0..^(𝐷 − 1)) → (𝐼 − 1) ∈ (0..^𝐷)))
84, 7sylbid 239 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷)))
98com12 32 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) ∈ (0..^𝐷)))
102, 3, 9mp2and 697 . . . . . 6 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷))
11 fveq2 6893 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → (𝐹𝑖) = (𝐹‘(𝐼 − 1)))
1211eleq1d 2811 . . . . . . . 8 (𝑖 = (𝐼 − 1) → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
13 fvoveq1 7439 . . . . . . . . . 10 (𝑖 = (𝐼 − 1) → (𝐹‘(𝑖 + 1)) = (𝐹‘((𝐼 − 1) + 1)))
1413, 11oveq12d 7434 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))
1514breq1d 5155 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
1614breq2d 5157 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
1712, 15, 163anbi123d 1433 . . . . . . 7 (𝑖 = (𝐼 − 1) → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1817rspcv 3603 . . . . . 6 ((𝐼 − 1) ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1910, 18syl 17 . . . . 5 (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
201, 19syl5com 31 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
2120a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))))
22213imp 1108 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
23 bgoldbtbndlem2.s . . . . 5 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
24 simp2 1134 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
25 oddprmALTV 47295 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )
26253ad2ant1 1130 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ Odd )
2724, 26anim12i 611 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
2827adantr 479 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
29 omoeALTV 47293 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3028, 29syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3123, 30eqeltrid 2830 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 ∈ Even )
322zcnd 12713 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℂ)
33323ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ ℂ)
34 npcan1 11680 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
3635fveq2d 6897 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
3736oveq1d 7431 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
3837breq1d 5155 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
3938adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
40 eldifi 4123 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
41 prmz 16671 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℤ)
42 zre 12608 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝐼 − 1)) ∈ ℤ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
43 simp1 1133 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝑖) ∈ (ℙ ∖ {2}))
4443ralimi 3073 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}))
45 fzo0ss1 13710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1..^𝐷) ⊆ (0..^𝐷)
4645sseli 3974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
4746adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
48 fveq2 6893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
4948eleq1d 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
5049rspcv 3603 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5147, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5251ex 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5352com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ Odd → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5554com13 88 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5644, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
571, 56mpcom 38 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
58573imp 1108 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ (ℙ ∖ {2}))
59 eldifi 4123 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
60 prmz 16671 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
61 zre 12608 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝐼) ∈ ℤ → (𝐹𝐼) ∈ ℝ)
62 bgoldbtbnd.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ (ℤ11))
63 eluzelz 12878 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℤ)
64 zre 12608 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 oddz 47239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
6665zred 12712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
67 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑋 ∈ ℝ)
68 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
69 4re 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 ∈ ℝ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℝ)
7167, 68, 70lesubaddd 11852 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 ↔ 𝑋 ≤ (4 + (𝐹𝐼))))
72 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑋 ∈ ℝ)
73 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
7472, 73resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
7569a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 4 ∈ ℝ)
76 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹𝐼) ∈ ℝ)
7775, 76readdcld 11284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + (𝐹𝐼)) ∈ ℝ)
7877, 73resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
79 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑁 ∈ ℝ)
8070, 68readdcld 11284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (4 + (𝐹𝐼)) ∈ ℝ)
81 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
8267, 80, 81lesub1d 11862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) ↔ (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1)))))
8382biimpa 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ 𝑋 ≤ (4 + (𝐹𝐼))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
8483adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
85 resubcl 11565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
8685adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
87 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑁 ∈ ℝ)
88 ltaddsub2 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁 ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
8988bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9070, 86, 87, 89syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9190biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9291adantld 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9392imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁)
94 4cn 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℂ)
9668recnd 11283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℂ)
97 recn 11239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹‘(𝐼 − 1)) ∈ ℝ → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9897adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9998adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10095, 96, 99addsubassd 11632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) = (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
101100breq1d 5155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
102101adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
10393, 102mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁)
10474, 78, 79, 84, 103lelttrd 11413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
105104exp32 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
10671, 105sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
107106com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
108107exp32 419 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
10966, 108sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
110109ex 411 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℝ → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
11162, 63, 64, 1104syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
112111imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
1131123adant3 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11461, 113syl5com 31 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11559, 60, 1143syl 18 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11658, 115mpcom 38 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11742, 116syl5com 31 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11840, 41, 1173syl 18 . . . . . . . . . . . . . . 15 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
119118impcom 406 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
12039, 119sylbid 239 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
121120expcom 412 . . . . . . . . . . . 12 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
122121com23 86 . . . . . . . . . . 11 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
123122imp 405 . . . . . . . . . 10 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
1241233adant3 1129 . . . . . . . . 9 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
125124impcom 406 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
126125com12 32 . . . . . . 7 ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
127126adantl 480 . . . . . 6 ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
128127impcom 406 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
12923, 128eqbrtrid 5180 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 < 𝑁)
13069a1i 11 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 ∈ ℝ)
131 1eluzge0 12922 . . . . . . . . . . . . . . . 16 1 ∈ (ℤ‘0)
132 fzoss1 13707 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1..^𝐷) ⊆ (0..^𝐷))
133131, 132mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → (1..^𝐷) ⊆ (0..^𝐷))
134133sselda 3978 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
135 fvoveq1 7439 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
136135, 48oveq12d 7434 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
137136breq1d 5155 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
138136breq2d 5157 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
13949, 137, 1383anbi123d 1433 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
140139rspcv 3603 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
141134, 140syl 17 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
14260zred 12712 . . . . . . . . . . . . . . 15 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
14359, 142syl 17 . . . . . . . . . . . . . 14 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℝ)
1441433ad2ant1 1130 . . . . . . . . . . . . 13 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ ℝ)
145141, 144syl6 35 . . . . . . . . . . . 12 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ))
146145ex 411 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ)))
1471, 146mpid 44 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ ℝ))
148147imp 405 . . . . . . . . 9 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
1491483adant2 1128 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
150149ad2antrr 724 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ∈ ℝ)
15141zred 12712 . . . . . . . . . 10 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
15240, 151syl 17 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
1531523ad2ant1 1130 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
154153ad2antlr 725 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
155150, 154resubcld 11683 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
156663ad2ant2 1131 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ ℝ)
157 resubcl 11565 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
158156, 153, 157syl2an 594 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
159158adantr 479 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
16032, 34syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) + 1) = 𝐼)
1611603ad2ant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
162161fveq2d 6897 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
163162oveq1d 7431 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
164163breq2d 5157 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) ↔ 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
165164biimpcd 248 . . . . . . . . 9 (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
1661653ad2ant3 1132 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
167166impcom 406 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
168167adantr 479 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
169156ad2antrr 724 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑋 ∈ ℝ)
170 bgoldbtbnd.d . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ (ℤ‘3))
171 eluzge3nn 12920 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
172170, 171syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ)
173172adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐷 ∈ ℕ)
174 bgoldbtbnd.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (RePart‘𝐷))
175174adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐹 ∈ (RePart‘𝐷))
176131, 132mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0..^𝐷))
177 fzossfz 13699 . . . . . . . . . . . . . . . . . 18 (0..^𝐷) ⊆ (0...𝐷)
178176, 177sstrdi 3991 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0...𝐷))
179170, 178syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1..^𝐷) ⊆ (0...𝐷))
180179sselda 3978 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0...𝐷))
181173, 175, 180iccpartxr 47027 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ*)
182 fzofzp1 13778 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^𝐷) → (𝐼 + 1) ∈ (0...𝐷))
183134, 182syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐼 + 1) ∈ (0...𝐷))
184173, 175, 183iccpartxr 47027 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
185181, 184jca 510 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
1861853adant2 1128 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
187 elico1 13415 . . . . . . . . . . . 12 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
188186, 187syl 17 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
189 simp2 1134 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋)
190188, 189biimtrdi 252 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋))
191190adantrd 490 . . . . . . . . 9 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
192191adantr 479 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
193192imp 405 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ≤ 𝑋)
194150, 169, 154, 193lesub1dd 11871 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ≤ (𝑋 − (𝐹‘(𝐼 − 1))))
195130, 155, 159, 168, 194ltletrd 11415 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < (𝑋 − (𝐹‘(𝐼 − 1))))
196195, 23breqtrrdi 5187 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < 𝑆)
19731, 129, 1963jca 1125 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
198197ex 411 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
19922, 198mpdan 685 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cdif 3943  wss 3946  {csn 4623   class class class wbr 5145  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152  *cxr 11288   < clt 11289  cle 11290  cmin 11485  cn 12258  2c2 12313  3c3 12314  4c4 12315  7c7 12318  cz 12604  cdc 12723  cuz 12868  [,)cico 13374  ...cfz 13532  ..^cfzo 13675  cprime 16667  RePartciccp 47021   Even ceven 47232   Odd codd 47233   GoldbachEven cgbe 47353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-ico 13378  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-prm 16668  df-iccp 47022  df-even 47234  df-odd 47235
This theorem is referenced by:  bgoldbtbndlem4  47416
  Copyright terms: Public domain W3C validator