Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem2 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem2 45258
Description: Lemma 2 for bgoldbtbnd 45261. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbndlem2.s 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
Assertion
Ref Expression
bgoldbtbndlem2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem2
StepHypRef Expression
1 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
2 elfzoelz 13387 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℤ)
3 elfzoel2 13386 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ ℤ)
4 elfzom1b 13486 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) ↔ (𝐼 − 1) ∈ (0..^(𝐷 − 1))))
5 fzossrbm1 13416 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
65adantl 482 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
76sseld 3920 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐼 − 1) ∈ (0..^(𝐷 − 1)) → (𝐼 − 1) ∈ (0..^𝐷)))
84, 7sylbid 239 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷)))
98com12 32 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) ∈ (0..^𝐷)))
102, 3, 9mp2and 696 . . . . . 6 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷))
11 fveq2 6774 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → (𝐹𝑖) = (𝐹‘(𝐼 − 1)))
1211eleq1d 2823 . . . . . . . 8 (𝑖 = (𝐼 − 1) → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
13 fvoveq1 7298 . . . . . . . . . 10 (𝑖 = (𝐼 − 1) → (𝐹‘(𝑖 + 1)) = (𝐹‘((𝐼 − 1) + 1)))
1413, 11oveq12d 7293 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))
1514breq1d 5084 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
1614breq2d 5086 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
1712, 15, 163anbi123d 1435 . . . . . . 7 (𝑖 = (𝐼 − 1) → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1817rspcv 3557 . . . . . 6 ((𝐼 − 1) ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1910, 18syl 17 . . . . 5 (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
201, 19syl5com 31 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
2120a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))))
22213imp 1110 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
23 bgoldbtbndlem2.s . . . . 5 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
24 simp2 1136 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
25 oddprmALTV 45139 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )
26253ad2ant1 1132 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ Odd )
2724, 26anim12i 613 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
2827adantr 481 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
29 omoeALTV 45137 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3028, 29syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3123, 30eqeltrid 2843 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 ∈ Even )
322zcnd 12427 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℂ)
33323ad2ant3 1134 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ ℂ)
34 npcan1 11400 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
3635fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
3736oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
3837breq1d 5084 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
3938adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
40 eldifi 4061 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
41 prmz 16380 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℤ)
42 zre 12323 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝐼 − 1)) ∈ ℤ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
43 simp1 1135 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝑖) ∈ (ℙ ∖ {2}))
4443ralimi 3087 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}))
45 fzo0ss1 13417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1..^𝐷) ⊆ (0..^𝐷)
4645sseli 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
48 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
4948eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
5049rspcv 3557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5147, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5251ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5352com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ Odd → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5554com13 88 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5644, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
571, 56mpcom 38 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
58573imp 1110 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ (ℙ ∖ {2}))
59 eldifi 4061 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
60 prmz 16380 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
61 zre 12323 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝐼) ∈ ℤ → (𝐹𝐼) ∈ ℝ)
62 bgoldbtbnd.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ (ℤ11))
63 eluzelz 12592 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℤ)
64 zre 12323 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 oddz 45083 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
6665zred 12426 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
67 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑋 ∈ ℝ)
68 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
69 4re 12057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 ∈ ℝ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℝ)
7167, 68, 70lesubaddd 11572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 ↔ 𝑋 ≤ (4 + (𝐹𝐼))))
72 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑋 ∈ ℝ)
73 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
7472, 73resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
7569a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 4 ∈ ℝ)
76 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹𝐼) ∈ ℝ)
7775, 76readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + (𝐹𝐼)) ∈ ℝ)
7877, 73resubcld 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
79 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑁 ∈ ℝ)
8070, 68readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (4 + (𝐹𝐼)) ∈ ℝ)
81 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
8267, 80, 81lesub1d 11582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) ↔ (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1)))))
8382biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ 𝑋 ≤ (4 + (𝐹𝐼))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
8483adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
85 resubcl 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
8685adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
87 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑁 ∈ ℝ)
88 ltaddsub2 11450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁 ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
8988bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9070, 86, 87, 89syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9190biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9291adantld 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9392imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁)
94 4cn 12058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℂ)
9668recnd 11003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℂ)
97 recn 10961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹‘(𝐼 − 1)) ∈ ℝ → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9897adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9998adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10095, 96, 99addsubassd 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) = (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
101100breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
102101adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
10393, 102mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁)
10474, 78, 79, 84, 103lelttrd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
105104exp32 421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
10671, 105sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
107106com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
108107exp32 421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
10966, 108sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
110109ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℝ → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
11164, 110syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
11262, 63, 1113syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
113112imp 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
1141133adant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11561, 114syl5com 31 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11659, 60, 1153syl 18 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11758, 116mpcom 38 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11842, 117syl5com 31 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11940, 41, 1183syl 18 . . . . . . . . . . . . . . 15 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
120119impcom 408 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
12139, 120sylbid 239 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
122121expcom 414 . . . . . . . . . . . 12 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
123122com23 86 . . . . . . . . . . 11 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
124123imp 407 . . . . . . . . . 10 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
1251243adant3 1131 . . . . . . . . 9 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
126125impcom 408 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
127126com12 32 . . . . . . 7 ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
128127adantl 482 . . . . . 6 ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
129128impcom 408 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
13023, 129eqbrtrid 5109 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 < 𝑁)
13169a1i 11 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 ∈ ℝ)
132 1eluzge0 12632 . . . . . . . . . . . . . . . 16 1 ∈ (ℤ‘0)
133 fzoss1 13414 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1..^𝐷) ⊆ (0..^𝐷))
134132, 133mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → (1..^𝐷) ⊆ (0..^𝐷))
135134sselda 3921 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
136 fvoveq1 7298 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
137136, 48oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
138137breq1d 5084 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
139137breq2d 5086 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
14049, 138, 1393anbi123d 1435 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
141140rspcv 3557 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
142135, 141syl 17 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
14360zred 12426 . . . . . . . . . . . . . . 15 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
14459, 143syl 17 . . . . . . . . . . . . . 14 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℝ)
1451443ad2ant1 1132 . . . . . . . . . . . . 13 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ ℝ)
146142, 145syl6 35 . . . . . . . . . . . 12 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ))
147146ex 413 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ)))
1481, 147mpid 44 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ ℝ))
149148imp 407 . . . . . . . . 9 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
1501493adant2 1130 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
151150ad2antrr 723 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ∈ ℝ)
15241zred 12426 . . . . . . . . . 10 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
15340, 152syl 17 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
1541533ad2ant1 1132 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
155154ad2antlr 724 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
156151, 155resubcld 11403 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
157663ad2ant2 1133 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ ℝ)
158 resubcl 11285 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
159157, 154, 158syl2an 596 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
160159adantr 481 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
16132, 34syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) + 1) = 𝐼)
1621613ad2ant3 1134 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
163162fveq2d 6778 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
164163oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
165164breq2d 5086 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) ↔ 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
166165biimpcd 248 . . . . . . . . 9 (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
1671663ad2ant3 1134 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
168167impcom 408 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
169168adantr 481 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
170157ad2antrr 723 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑋 ∈ ℝ)
171 bgoldbtbnd.d . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ (ℤ‘3))
172 eluzge3nn 12630 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
173171, 172syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ)
174173adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐷 ∈ ℕ)
175 bgoldbtbnd.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (RePart‘𝐷))
176175adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐹 ∈ (RePart‘𝐷))
177132, 133mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0..^𝐷))
178 fzossfz 13406 . . . . . . . . . . . . . . . . . 18 (0..^𝐷) ⊆ (0...𝐷)
179177, 178sstrdi 3933 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0...𝐷))
180171, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1..^𝐷) ⊆ (0...𝐷))
181180sselda 3921 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0...𝐷))
182174, 176, 181iccpartxr 44871 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ*)
183 fzofzp1 13484 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^𝐷) → (𝐼 + 1) ∈ (0...𝐷))
184135, 183syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐼 + 1) ∈ (0...𝐷))
185174, 176, 184iccpartxr 44871 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
186182, 185jca 512 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
1871863adant2 1130 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
188 elico1 13122 . . . . . . . . . . . 12 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
189187, 188syl 17 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
190 simp2 1136 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋)
191189, 190syl6bi 252 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋))
192191adantrd 492 . . . . . . . . 9 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
193192adantr 481 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
194193imp 407 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ≤ 𝑋)
195151, 170, 155, 194lesub1dd 11591 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ≤ (𝑋 − (𝐹‘(𝐼 − 1))))
196131, 156, 160, 169, 195ltletrd 11135 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < (𝑋 − (𝐹‘(𝐼 − 1))))
197196, 23breqtrrdi 5116 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < 𝑆)
19831, 130, 1973jca 1127 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
199198ex 413 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
20022, 199mpdan 684 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  3c3 12029  4c4 12030  7c7 12033  cz 12319  cdc 12437  cuz 12582  [,)cico 13081  ...cfz 13239  ..^cfzo 13382  cprime 16376  RePartciccp 44865   Even ceven 45076   Odd codd 45077   GoldbachEven cgbe 45197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-iccp 44866  df-even 45078  df-odd 45079
This theorem is referenced by:  bgoldbtbndlem4  45260
  Copyright terms: Public domain W3C validator