Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem2 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem2 47680
Description: Lemma 2 for bgoldbtbnd 47683. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbndlem2.s 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
Assertion
Ref Expression
bgoldbtbndlem2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem2
StepHypRef Expression
1 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
2 elfzoelz 13716 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℤ)
3 elfzoel2 13715 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ ℤ)
4 elfzom1b 13816 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) ↔ (𝐼 − 1) ∈ (0..^(𝐷 − 1))))
5 fzossrbm1 13745 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
65adantl 481 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (0..^(𝐷 − 1)) ⊆ (0..^𝐷))
76sseld 4007 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐼 − 1) ∈ (0..^(𝐷 − 1)) → (𝐼 − 1) ∈ (0..^𝐷)))
84, 7sylbid 240 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷)))
98com12 32 . . . . . . 7 (𝐼 ∈ (1..^𝐷) → ((𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) ∈ (0..^𝐷)))
102, 3, 9mp2and 698 . . . . . 6 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ (0..^𝐷))
11 fveq2 6920 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → (𝐹𝑖) = (𝐹‘(𝐼 − 1)))
1211eleq1d 2829 . . . . . . . 8 (𝑖 = (𝐼 − 1) → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
13 fvoveq1 7471 . . . . . . . . . 10 (𝑖 = (𝐼 − 1) → (𝐹‘(𝑖 + 1)) = (𝐹‘((𝐼 − 1) + 1)))
1413, 11oveq12d 7466 . . . . . . . . 9 (𝑖 = (𝐼 − 1) → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))
1514breq1d 5176 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
1614breq2d 5178 . . . . . . . 8 (𝑖 = (𝐼 − 1) → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
1712, 15, 163anbi123d 1436 . . . . . . 7 (𝑖 = (𝐼 − 1) → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1817rspcv 3631 . . . . . 6 ((𝐼 − 1) ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
1910, 18syl 17 . . . . 5 (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
201, 19syl5com 31 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))))
2120a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))))
22213imp 1111 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))))
23 bgoldbtbndlem2.s . . . . 5 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1)))
24 simp2 1137 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
25 oddprmALTV 47561 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )
26253ad2ant1 1133 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ Odd )
2724, 26anim12i 612 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
2827adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
29 omoeALTV 47559 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3028, 29syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even )
3123, 30eqeltrid 2848 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 ∈ Even )
322zcnd 12748 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ ℂ)
33323ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ ℂ)
34 npcan1 11715 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
3635fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
3736oveq1d 7463 . . . . . . . . . . . . . . . 16 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
3837breq1d 5176 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
3938adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
40 eldifi 4154 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
41 prmz 16722 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℤ)
42 zre 12643 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝐼 − 1)) ∈ ℤ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
43 simp1 1136 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝑖) ∈ (ℙ ∖ {2}))
4443ralimi 3089 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}))
45 fzo0ss1 13746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1..^𝐷) ⊆ (0..^𝐷)
4645sseli 4004 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
48 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
4948eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
5049rspcv 3631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5147, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2})))
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5352com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ Odd → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5554com13 88 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
5644, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2})))))
571, 56mpcom 38 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ (ℙ ∖ {2}))))
58573imp 1111 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ (ℙ ∖ {2}))
59 eldifi 4154 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
60 prmz 16722 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
61 zre 12643 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝐼) ∈ ℤ → (𝐹𝐼) ∈ ℝ)
62 bgoldbtbnd.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ (ℤ11))
63 eluzelz 12913 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℤ)
64 zre 12643 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 oddz 47505 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
6665zred 12747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
67 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑋 ∈ ℝ)
68 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
69 4re 12377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 ∈ ℝ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℝ)
7167, 68, 70lesubaddd 11887 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 ↔ 𝑋 ≤ (4 + (𝐹𝐼))))
72 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑋 ∈ ℝ)
73 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
7472, 73resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
7569a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 4 ∈ ℝ)
76 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝐹𝐼) ∈ ℝ)
7775, 76readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + (𝐹𝐼)) ∈ ℝ)
7877, 73resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
79 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → 𝑁 ∈ ℝ)
8070, 68readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (4 + (𝐹𝐼)) ∈ ℝ)
81 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
8267, 80, 81lesub1d 11897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) ↔ (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1)))))
8382biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ 𝑋 ≤ (4 + (𝐹𝐼))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
8483adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) ≤ ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))))
85 resubcl 11600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
87 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 𝑁 ∈ ℝ)
88 ltaddsub2 11765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁 ↔ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)))
8988bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((4 ∈ ℝ ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9070, 86, 87, 89syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9190biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9291adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
9392imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁)
94 4cn 12378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → 4 ∈ ℂ)
9668recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹𝐼) ∈ ℂ)
97 recn 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹‘(𝐼 − 1)) ∈ ℝ → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10095, 96, 99addsubassd 11667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) = (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
101100breq1d 5176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
102101adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁 ↔ (4 + ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))) < 𝑁))
10393, 102mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → ((4 + (𝐹𝐼)) − (𝐹‘(𝐼 − 1))) < 𝑁)
10474, 78, 79, 84, 103lelttrd 11448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) ∧ (𝑋 ≤ (4 + (𝐹𝐼)) ∧ ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
105104exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (𝑋 ≤ (4 + (𝐹𝐼)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
10671, 105sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
107106com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹𝐼) ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
108107exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
10966, 108sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
110109ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℝ → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
11162, 63, 64, 1104syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ Odd → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))))
112111imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ Odd ) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
1131123adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11461, 113syl5com 31 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐼) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11559, 60, 1143syl 18 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))))
11658, 115mpcom 38 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 − 1)) ∈ ℝ → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11742, 116syl5com 31 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝐼 − 1)) ∈ ℤ → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
11840, 41, 1173syl 18 . . . . . . . . . . . . . . 15 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
119118impcom 407 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹𝐼) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
12039, 119sylbid 240 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
121120expcom 413 . . . . . . . . . . . 12 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
122121com23 86 . . . . . . . . . . 11 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))))
123122imp 406 . . . . . . . . . 10 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
1241233adant3 1132 . . . . . . . . 9 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
125124impcom 407 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 − (𝐹𝐼)) ≤ 4 → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
126125com12 32 . . . . . . 7 ((𝑋 − (𝐹𝐼)) ≤ 4 → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
127126adantl 481 . . . . . 6 ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
128127impcom 407 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)
12923, 128eqbrtrid 5201 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑆 < 𝑁)
13069a1i 11 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 ∈ ℝ)
131 1eluzge0 12957 . . . . . . . . . . . . . . . 16 1 ∈ (ℤ‘0)
132 fzoss1 13743 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1..^𝐷) ⊆ (0..^𝐷))
133131, 132mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → (1..^𝐷) ⊆ (0..^𝐷))
134133sselda 4008 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0..^𝐷))
135 fvoveq1 7471 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
136135, 48oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
137136breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
138136breq2d 5178 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
13949, 137, 1383anbi123d 1436 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
140139rspcv 3631 . . . . . . . . . . . . . 14 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
141134, 140syl 17 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
14260zred 12747 . . . . . . . . . . . . . . 15 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
14359, 142syl 17 . . . . . . . . . . . . . 14 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℝ)
1441433ad2ant1 1133 . . . . . . . . . . . . 13 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ ℝ)
145141, 144syl6 35 . . . . . . . . . . . 12 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ))
146145ex 412 . . . . . . . . . . 11 (𝜑 → (𝐼 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝐼) ∈ ℝ)))
1471, 146mpid 44 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹𝐼) ∈ ℝ))
148147imp 406 . . . . . . . . 9 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
1491483adant2 1131 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ)
150149ad2antrr 725 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ∈ ℝ)
15141zred 12747 . . . . . . . . . 10 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℝ)
15240, 151syl 17 . . . . . . . . 9 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
1531523ad2ant1 1133 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
154153ad2antlr 726 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹‘(𝐼 − 1)) ∈ ℝ)
155150, 154resubcld 11718 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ∈ ℝ)
156663ad2ant2 1134 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ ℝ)
157 resubcl 11600 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ (𝐹‘(𝐼 − 1)) ∈ ℝ) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
158156, 153, 157syl2an 595 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
159158adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ ℝ)
16032, 34syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) + 1) = 𝐼)
1611603ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) + 1) = 𝐼)
162161fveq2d 6924 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘((𝐼 − 1) + 1)) = (𝐹𝐼))
163162oveq1d 7463 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) = ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
164163breq2d 5178 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) ↔ 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
165164biimpcd 249 . . . . . . . . 9 (4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
1661653ad2ant3 1135 . . . . . . . 8 (((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1)))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1)))))
167166impcom 407 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
168167adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < ((𝐹𝐼) − (𝐹‘(𝐼 − 1))))
169156ad2antrr 725 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 𝑋 ∈ ℝ)
170 bgoldbtbnd.d . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ (ℤ‘3))
171 eluzge3nn 12955 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
172170, 171syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℕ)
173172adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐷 ∈ ℕ)
174 bgoldbtbnd.f . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (RePart‘𝐷))
175174adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐹 ∈ (RePart‘𝐷))
176131, 132mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0..^𝐷))
177 fzossfz 13735 . . . . . . . . . . . . . . . . . 18 (0..^𝐷) ⊆ (0...𝐷)
178176, 177sstrdi 4021 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (ℤ‘3) → (1..^𝐷) ⊆ (0...𝐷))
179170, 178syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1..^𝐷) ⊆ (0...𝐷))
180179sselda 4008 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → 𝐼 ∈ (0...𝐷))
181173, 175, 180iccpartxr 47293 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹𝐼) ∈ ℝ*)
182 fzofzp1 13814 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (0..^𝐷) → (𝐼 + 1) ∈ (0...𝐷))
183134, 182syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐼 + 1) ∈ (0...𝐷))
184173, 175, 183iccpartxr 47293 . . . . . . . . . . . . . 14 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
185181, 184jca 511 . . . . . . . . . . . . 13 ((𝜑𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
1861853adant2 1131 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
187 elico1 13450 . . . . . . . . . . . 12 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
188186, 187syl 17 . . . . . . . . . . 11 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
189 simp2 1137 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋)
190188, 189biimtrdi 253 . . . . . . . . . 10 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝐹𝐼) ≤ 𝑋))
191190adantrd 491 . . . . . . . . 9 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
192191adantr 480 . . . . . . . 8 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝐹𝐼) ≤ 𝑋))
193192imp 406 . . . . . . 7 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝐹𝐼) ≤ 𝑋)
194150, 169, 154, 193lesub1dd 11906 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → ((𝐹𝐼) − (𝐹‘(𝐼 − 1))) ≤ (𝑋 − (𝐹‘(𝐼 − 1))))
195130, 155, 159, 168, 194ltletrd 11450 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < (𝑋 − (𝐹‘(𝐼 − 1))))
196195, 23breqtrrdi 5208 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → 4 < 𝑆)
19731, 129, 1963jca 1128 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
198197ex 412 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))) < (𝑁 − 4) ∧ 4 < ((𝐹‘((𝐼 − 1) + 1)) − (𝐹‘(𝐼 − 1))))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
19922, 198mpdan 686 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  4c4 12350  7c7 12353  cz 12639  cdc 12758  cuz 12903  [,)cico 13409  ...cfz 13567  ..^cfzo 13711  cprime 16718  RePartciccp 47287   Even ceven 47498   Odd codd 47499   GoldbachEven cgbe 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-iccp 47288  df-even 47500  df-odd 47501
This theorem is referenced by:  bgoldbtbndlem4  47682
  Copyright terms: Public domain W3C validator